Skip to main content
Log in

Analysis of nonlinear limit cycle flutter of a restrained plate induced by subsonic flow

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear flutter oscillations of a restrained cantilevered plate induced by subsonic flow have been investigated in this paper. A non-smooth piecewise linear spring is considered to simulate the motion constraints. A set of discrete equations is obtained by the Galerkin method. Emphasis is placed on the limit cycle oscillations (LCOs) of the aeroelastic system due to the nonlinearity. A flutter determinant is developed to the analysis of flutter instability. The system loses stability by flutter and undergoes LCOs afterward due to the nonlinearity. The stability of LCOs is addressed on the basis of the equivalent linearized method. The location of the nonlinear motion constraints is intimately bound up with the type of Hopf bifurcations (subcritical or supercritical). Interestingly, for some special cases, the Hopf bifurcations are both subcritical and supercritical. The two-multiple semi-stable limit cycle bifurcation due to the extreme point of the flutter curve is also determined. The analytical results predicted by the analysis scheme are sufficiently validated by numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(c_{ij}\) :

The element of damping matrix \(\mathbf{C}\)

\(D\) :

Plate bending stiffness \(=\,{Eh^{3}}/{[12(1-\upsilon ^{2})]}\)

\(E\) :

Plate elastic modulus

\(f_{\mathrm{non}}\) :

Force of nonlinear spring support

\(g_\mathrm{s}\) :

Structural damping coefficient of plate

\(h\) :

Plate thickness

\(K_1, K_2\) :

Linear stiffness of nonlinear spring support

\(k_{ij}\) :

The element of stiffness matrix \(\mathbf{K}\)

\(k_{\mathrm{eq}}\) :

Equivalent linearization stiffness

\(l\) :

Plate length

\(l_r\) :

Location of motion constraints

\((\mathrm{LCO})_\mathrm{s}\) :

A stable LCO

\((\mathrm{LCO})_\mathrm{u}\) :

An unstable LCO

\(m_{ij}\) :

The element of mass matrix \(\mathbf{M}\)

\(n\) :

Mode number

\(N\) :

Total number of modes

\(q_n\) :

\(n\)th mode amplitude

\(s_n\) :

\(n\)th eigenvalue of a cantilever beam: \(s_1=1.875,s_2 =4.694\)

\(k_{ij}\) :

The element of matrix \(\mathbf{K}\)

\(\mathbf{O}_A^{\mathrm{s(u)}}\) :

Stable (unstable) fixed point \(\mathbf{O}_A\)

\(P_\mathrm{s}\) :

Amplitude of a stable LCO

\(\Delta P_\mathrm{s}\) :

Increment of amplitude of a stable LCO

\((p_1)_0\) :

Initial condition of \(p_1 \)

\(t\) :

Time

\(u_\infty \) :

Velocity of air at freestream

\(w\) :

Plate bending deflection

\(w_0\) :

Initial deviation of the nonlinear spring

\(\mathbf{X}\) :

State space

\(x\) :

Stream-wise spatial coordinate

\(y\) :

Coordinate normal to plane of plate

\(\delta (\cdot )\) :

Dirac-delta function

\(\omega _\mathrm{f}\) :

Flutter frequency

\(\varphi _n\) :

\(n\)th eigenfunction of a cantilevered beam

\(\upsilon \) :

Poisson’s ratio

\(\rho _\mathrm{s}\) :

Plate density

\(\rho _\infty \) :

Density of air at freestream

\(\lambda _\mathrm{f}\) :

Flutter critical dynamic pressure

\(\lambda _A\) :

Flutter critical dynamic pressure corresponding to the fixed point \(\mathbf{O}_A \)

\(\lambda _B\) :

Flutter critical dynamic pressure corresponding to the fixed point \(\mathbf{O}_B \)

\(\lambda _C\) :

Flutter critical dynamic pressure corresponding to the maximum \(k_\mathrm{eq} \)

\(\lambda _h\) :

Flutter critical dynamic pressure corresponding to \(k_\mathrm{eq}\)

\(\lambda _{M}\) :

Critical dynamic pressure of the two-multiple semi-stable cycle bifurcation

\(\lambda _t\) :

Dynamic pressure for a LCO

References

  1. Jeromr, C.R.: A train for the 21st century. Rail Int. 25, 2–8 (1994)

    Google Scholar 

  2. Raghunathan, R.S., Kim, H.D., Setoguchi, T.: Aerodynamics of high-speed railway trains. Prog. Aerosp. Sci. 38, 469–514 (2002)

    Article  Google Scholar 

  3. Li, P., Yang, Y.R., Zhang, M.L.: Melnikov’s method for chaos of a two-dimensional thin panel in subsonic flow with external excitation. Mech. Res. Commun. 38, 524–528 (2011)

    Article  MATH  Google Scholar 

  4. Dowell, E.H.: Aeroelasticity of Plates and Shells. Noordhoff International Publishing, Leyden (1975)

    MATH  Google Scholar 

  5. Païdoussis, M.P.: Fluid-Structure Interactions. Slender Structures and Axial Flow, vol. 2, 1st edn. Elsevier Academic Press, London (2004)

  6. Dugundji, J., Dowell, E.H., Perkin, B.: Subsonic flutter of panels on continuous elastic foundations. AIAA J. 5, 1146–1154 (1963)

    Google Scholar 

  7. Kornecki, A., Dowell, E.H., O’Brien, J.: On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J. Sound Vib. 47, 163–178 (1974)

    Article  Google Scholar 

  8. Bisplinghoff, R.L., Ashley, H., Halfman, R.L.: Aeroelasticity. Addison-Wesley Publishing Co., Inc., Cambridge, MA (1955)

    MATH  Google Scholar 

  9. Guo, C.Q., Païdoussis, M.P.: Stability of rectangular plates with free side-edges in two-dimensional inviscid channel flow. J. Appl. Mech. 67, 171–176 (2000)

    Article  MATH  Google Scholar 

  10. Li, P., Yang, Y.R., Xu, W.: Nonlinear dynamics analysis of a two-dimensional thin panel with an external forcing in incompressible subsonic flow. Nonlinear Dyn. 67, 2483–2503 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, P., Yang, Y.R., Xu, W., Chen, G.: On the aeroelastic stability and bifurcation structure of subsonic nonlinear thin plates subjected to external excitation. Arch. Appl. Mech. 82, 1251–1267 (2012)

    Article  MATH  Google Scholar 

  12. Huang, L.X.: Flutter of cantilevered plates in axial flow. J. Fluids Struct. 9, 127–147 (1995)

    Article  Google Scholar 

  13. de Breuker, R., Abdalla, M.M., Gürdal, Z.: Flutter of partially rigid cantilevered plates in axial flow. AIAA J. 46, 936–946 (2008)

    Article  Google Scholar 

  14. Yang, Y.B., Moretti, P.M.: Flow-induced vibration of free edges of thin films. J. Fluids Struct. 16, 989–1008 (2002)

    Article  Google Scholar 

  15. Watanabe, Y., Suzuki, S., Sugihara, M., Sueoka, Y.: A theoretical study of paper flutter. J. Fluids Struct. 16, 543–560 (2002)

    Article  Google Scholar 

  16. Li, P., Yang, Y.R.: On the stability and chaos of a plate with motion constrains subjected to subsonic flow. Int. J. Non-Linear. Mech. 59, 28–36 (2014)

    Article  Google Scholar 

  17. Ellen, C.H.: The non-linear stability of panels in incompressible flow. J. Sound Vib. 54, 117–121 (1977)

  18. Matsuzaki, Y.: Reexamination of stability of a two-dimensional finite panel exposed to an incompressible flow. Trans. ASME. J. Appl. Mech. 48, 472–478 (1981)

    Article  MATH  Google Scholar 

  19. Tang, D.M., Yamamoto, H., Dowell, E.H.: Flutter and limit cycle oscillations of two-dimensional panels in three-dimensional axial flow. J. Fluids Struct. 17, 225–242 (2003)

    Article  Google Scholar 

  20. Attar, P.J., Dowell, E.H., Tang, D.M.: Modeling aerodynamic nonlinearity for two aeroelastic configurations: delta and flapping flag. In: Proceedings of the 44th AIAA/ASME/ASCE/AHS Structure, Structural dynamics and Material Conference, 7–10 April, Norfolk, VA, pp. 1–12 (2003)

  21. Tang, L.S., Païdoussis, M.P.: On the stabilities and the post-critical behavior of two-dimensional cantilevered flexible plates in axial flow. J. Sound Vib. 305, 97–115 (2007)

    Article  Google Scholar 

  22. Tang, L.S., Païdoussis, M.P., Jiang, J.: The dynamics of variants of two-dimensional cantilevered flexible plates in axial flow. J. Sound Vib. 323, 214–231 (2009)

    Article  Google Scholar 

  23. Yang, Y.R.: KBM method of analyzing limit cycle flutter of a wing with an external store and comparison with a wind-tunnel test. J. Sound Vib. 187, 271–280 (1995)

    Article  Google Scholar 

  24. Yang, Z.C., Zhao, L.C.: Analysis of limit cycle flutter of an airfoil in incompressible flow. J. Sound Vib. 123, 1–13 (1988)

    Article  Google Scholar 

  25. Jin, J.D.: Stability and chaotic motions of a restrained pipe conveying fluid. J. Sound Vib. 208, 427–439 (1997)

    Article  Google Scholar 

  26. Païdoussis, M.P., Li, G.X., Rand, R.H.: Chaotic motions of a constrained pipe conveying fluid: comparison between simulation, analysis, and experiment. Trans. ASME. J. Appl. Mech. 58, 559–565 (1991)

    Article  Google Scholar 

  27. Yang, Y.R., Zhao, L.C.: Investigation of subharmonic response of limit cycle flutter of wing-store system. J. Vib. Eng. 5, 296–305 (1992). (in Chinese)

    Google Scholar 

  28. Shaw, S.W., Holmes, P.J.: A periodically forced piece linear oscillator. J. Sound Vib. 90, 129–155 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos: 11302183; 11372257; 11072204); the Fundamental Research Funds for Central Universities (Grant No: 2682013XC026) and the project for “Youth Science and Technology Innovation Team (2013TD0004) of Sichuan Province, China.” The authors are grateful to the anonymous reviewers whose work helped greatly in writing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Appendices

Appendix 1

The elements of each matrix in Eq. 8 are defined as follows:

\(\mathbf{M}_\mathrm{s} \) and \(\mathbf{M}_\mathrm{f} \) are \(N\times N\) matrices with the elements:

$$\begin{aligned} M_{s_{ij}}&= \left\{ {\begin{array}{l@{\quad }l} 1&{} i=j \\ 0&{} i\ne j \\ \end{array}}\right. \nonumber \\ M_{f_{ij}}&= \left\{ {\begin{array}{l@{\quad }l} -\int _0^1 {\kappa \left[ {\varphi _i (\xi )}\right] ^{2}\mathrm{d}\xi }&{} i=j \\ -\int _0^1 {\kappa \varphi _i (\xi )\varphi _j (\xi )\mathrm{d}\xi }&{} i\ne j \\ \end{array}}\right. \end{aligned}$$
(36)

\(\mathbf{C}_\mathrm{s}\) and \(\mathbf{C}_\mathrm{f}\) are \(N\times N\) matrices with the elements:

$$\begin{aligned} C_{s_{ij}}&= \left\{ {\begin{array}{l@{\quad }l} \alpha s_i^4&{} i=j \\ 0&{} i\ne j \\ \end{array}}\right. \nonumber \\ C_{f_{ij}}&= \left\{ {\begin{array}{l@{\quad }l} -\frac{1}{\pi }\left[ 2\int _0^1 \kappa \varphi _i (\xi ){\varphi }'_i (\xi )\mathrm{d}\xi \right. &{}\\ \quad \left. \!-\!\int _0^1 {\ln (1\!-\!\xi )\varphi _i (\xi )\varphi _i (\xi _r)\mathrm{d}\xi }\right] &{} i=j \\ -\frac{1}{\pi }\left[ 2\int _0^1 \kappa \varphi _i (\xi ){\varphi }'_j (\xi )\mathrm{d}\xi \right. &{}\\ \quad \left. \!-\!\int _0^1 {\ln (1\!-\!\xi )\varphi _i (\xi )\varphi _j (\xi _r)\mathrm{d}\xi }\right] &{} i\ne j \\ \end{array}}\right. \end{aligned}$$
(37)

\(\mathbf{K}_\mathrm{s}\) and \(\mathbf{K}_\mathrm{f} \) are \(N\times N\) matrices with the elements:

$$\begin{aligned} K_{s_{ij}}&= \left\{ {\begin{array}{l@{\quad }l} s_i^4&{} i=j \\ 0&{} i\ne j \\ \end{array}}\right. \nonumber \\ K_{f_{ij}}&= \left\{ {\begin{array}{l@{\quad }l} -\frac{1}{\pi }\left[ \int _0^1 \kappa \varphi _i (\xi ){\varphi }''_i (\xi )\mathrm{d}\xi \right. &{}\\ \quad \left. \!-\!\int _0^1 {\ln (1\!-\!\xi )\varphi _i (\xi ){\varphi }'_i (\xi _r)\mathrm{d}\xi }\right] &{} i=j\\ -\frac{1}{\pi }\left[ \int _0^1 \kappa \varphi _i (\xi ){\varphi }''_j (\xi )\mathrm{d}\xi \right. &{}\\ \quad \left. \!-\!\int _0^1 {\ln (1\!-\!\xi )\varphi _i (\xi ){\varphi }'_j (\xi _r)\mathrm{d}\xi }\right] &{} i\ne j \\ \end{array}}\right. \end{aligned}$$
(38)

\(\mathbf{F}_{\mathrm{non}} \) is a \(N\times 1\) vector with the elements:

$$\begin{aligned} F_{{non}_i} =\left\{ {\begin{array}{ll} k_1 \varphi _i (\xi _r)\eta _r &{} \eta _r \le s_0\\ k_1 \varphi _i (\xi _r)s_0 +c_0 k_1 \varphi _i (\xi _r)\left( {\eta _r -s_0}\right) &{} \eta _r >s_0\\ \end{array}}\right. \nonumber \\ \end{aligned}$$
(39)

where \(\eta _r\) is the dimensionless plate displacement at \(\xi =\xi _r\):

$$\begin{aligned} \eta _r =\sum _{i=1}^N {\varphi _i (\xi _r)q_i (\tau )}. \end{aligned}$$

Appendix 2

The elements of each matrix in Eq. 10 are defined as follows:

$$\begin{aligned}&\mathbf{M}=\left[ {\begin{array}{c@{\qquad }c} 1.1022&{} 1.1022-0.0119e \\ 0.0119&{} 1.1103-0.0119e \\ \end{array}}\right] \nonumber \\&\mathbf{C}=\left[ {\begin{array}{c@{\qquad }c} 0.0189+0.4820\sqrt{\lambda }&{} -0.0189e-(0.4820e+1.5978)\sqrt{\lambda } \\ 0.5252\sqrt{\lambda }&{} 0.74212+(0.6560-0.525e)\sqrt{\lambda }\\ \end{array}}\right] \nonumber \\&\mathbf{K}=\left[ {{\begin{array}{c@{\qquad }c} 12.3596-0.7368\lambda &{} -12.3596e+(-1.9735+0.7368e)\lambda \\ 1.1707\lambda &{} 485.4811-(1.1707e+7.8919)\lambda \\ \end{array}}}\right] \nonumber \\&{\bar{\mathbf{F}}}_{\mathrm{non}} = f_p \left[ {\begin{array}{l} 1 \\ e \\ \end{array}}\right] ;f_p (p_1)=\left\{ {\begin{array}{l@{\qquad }l} \bar{{k}}_1 p_1 &{} p_1 \le \bar{{s}}_0\\ c_0 \bar{{k}}_1 p_1 +\bar{{k}}_1 (1-c_0)\bar{{s}}_0 &{} p_1 >\bar{{s}}_0 \\ \end{array}}\right. ; \nonumber \\&\bar{{k}}_1 = k_1 \varphi _1^2 (\xi _r);e=\frac{\varphi _2 (\xi _r)}{\varphi _1 (\xi _r)};{\bar{{s}}_0 =s_0}/{\varphi _1 (\xi _r)}. \end{aligned}$$
(40)

Appendix 3

The elements of each matrix in Eq. 22 are defined as follows:

$$\begin{aligned} A_0&= 1.211-0.01297e \nonumber \\ B_0&= -0.0119\bar{{k}}e^{2}+1.1141\bar{{k}}e-1.1103\bar{{k}}-548.8341 \nonumber \\ B_1&= -0.3696 \nonumber \\ B_2&= 1.2746e+9.6283 \nonumber \\ C_0&= 12.3596\bar{{k}}e^{2}+485.4811k+6000.352 \nonumber \\ C_2&= -0.7368\bar{{k}}e^{2}+0.8028\bar{{k}}e-7.8919\bar{{k}}-455.2432 \nonumber \\ C_4&= 8.1251 \nonumber \\ D_0&= -0.8379 \nonumber \\ D_1&= 0.5725e-0.6986 \nonumber \\ E_0&= 0.0189\bar{{k}}e^{2}+0.7412\bar{{k}}+18.3365 \nonumber \\ E_1&= 0.482\bar{{k}}e^{2}+1.0728\bar{{k}}e+0.565\bar{{k}}+242.1098 \nonumber \\ E_2&= -0.6953 \nonumber \\ E_3&= -1.3806 \end{aligned}$$
(41)

The elements of each matrix in Eq. 24 are defined as follows:

$$\begin{aligned} F_0&= C_0 D_0^2 -B_0 D_0 E_0 +A_0 E_0^2 \nonumber \\ F_1&= -E_0 \left( {B_0 D_1 +B_1 D_0}\right) +2A_0 E_0 E_1 -B_0 D_0 E_1\nonumber \\&+\,2C_0 D_0 D_1 \nonumber \\ F_2&= C_0 D_1^2 +C_2 D_0^2 +A_0 \left( {E_1^2 +2E_0 E_2}\right) \nonumber \\&-\,E_1 \left( {B_0 D_1 +B_1 D_0}\right) -E_0 \left( {B_1 D_1 +B_2 D_0}\right) \nonumber \\&-\,B_0 D_0 E_2 \nonumber \\ F_3&= -E_2 \left( {B_0 D_1 +B_1 D_0}\right) -E_1 \left( {B_1 D_1 +B_2 D_0}\right) \nonumber \\&+\,A_0 \left( {2E_0 E_3 +2E_1 E_2}\right) \nonumber \\&-\,B_0 D_0 E_3 -B_2 D_1 E_0 +2C_2 D_0 D_1 \nonumber \\ \end{aligned}$$
$$\begin{aligned} F_4&= C_2 D_1^2 +C_4 D_0^2 +A_0 \left( {E_2^2 +2E_1 E_3}\right) \nonumber \\&-\,E_3 \left( {B_0 D_1 +B_1 D_0}\right) \nonumber \\&\quad -\,E_2 \left( {B_1 D_1 +B_2 D_0}\right) -B_2 D_1 E_1 \nonumber \\ F_5&= -E_3 (B_1 D_1 +B_2 D_0)+2A_0 E_2 E_3 -B_2 D_1 E_2\nonumber \\&+\,2C_4 D_0 D_1 \nonumber \\ F_6&= C_4 D_1^2 -B_2 D_1 E_3 +A_0 E_3^2 \end{aligned}$$
(42)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Yang, Y. & Chen, G. Analysis of nonlinear limit cycle flutter of a restrained plate induced by subsonic flow. Nonlinear Dyn 79, 119–138 (2015). https://doi.org/10.1007/s11071-014-1650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1650-4

Keywords

Navigation