Skip to main content
Log in

Stability properties of two-term fractional differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper formulates explicit necessary and sufficient conditions for the local asymptotic stability of equilibrium points of the fractional differential equation

$$\begin{aligned} {D}^{\alpha }y(t)+f(y(t),\, {D}^{\beta }y(t))=0,\quad t>0 \end{aligned}$$

involving two Caputo derivatives of real orders \(\alpha >\beta \) such that \(\alpha /\beta \) is a rational number. First, we consider this equation in the linearized form and derive optimal stability conditions in terms of its coefficients and orders \(\alpha ,\beta \). As a byproduct, a special fractional version of the Routh–Hurwitz criterion is established. Then, using the recent developments on linearization methods in fractional dynamical systems, we extend these results to the original nonlinear equation. Some illustrating examples, involving significant linear and nonlinear fractional differential equations, support these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys. Lett. A 358, 1–4 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barbosa, R.S., Machado, J.A.T., Vinagre, B.M., Calderon, A.J.: Analysis of the van der Pol oscillator containing derivatives of fractional order. J. Vib. Control 13, 1291–1301 (2007)

    Article  MATH  Google Scholar 

  3. Čermák, J., Kisela, T., Nechvátal, L.: Stability regions for linear fractional differential systems and their discretizations. Appl. Math. Comput. 219, 7012–7022 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hartley, T.T., Lorenzo, C.F.: Control of initialized fractional-order systems. NASA/TP-2002-211377/REV1, 46 pp (2002)

  5. Haubold, H.J., Mathai, A.M.: Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 51 (2011)

    Article  MathSciNet  Google Scholar 

  6. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, The Netherlands (2006)

    MATH  Google Scholar 

  7. Li, C.P., Zhang, F.R.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, 27–47 (2011)

    Article  Google Scholar 

  8. Li, C.P., Ma, Y.: Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71, 621–633 (2013)

    Article  MATH  Google Scholar 

  9. Lorenzo, C.F., Hartley, T.T.: Initialized fractional calculus. NASA/TP-2000-209943, 12 pp (2000)

  10. Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, Wien (1997)

    Chapter  Google Scholar 

  12. Marden, M.: Geometry of polynomials. Mathematical Surveys and Monographs, No. 3, Providence (1966)

  13. Matignon, D.: Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems Applications, pp. 963–968. IEEE-SMC, Lille (1996)

    Google Scholar 

  14. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (2001)

    Book  MATH  Google Scholar 

  15. Petráš, I.: Stability of fractional-order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12, 269–298 (2009)

    MATH  MathSciNet  Google Scholar 

  16. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press, Springer, Beijing, Berlin (2011)

    Book  Google Scholar 

  17. Podlubný, I.: Fractional Differential Equations. Academic Press, New Jersey (1999)

    MATH  Google Scholar 

  18. Radwan, A.G., Soliman, A.M., Elwakil, A.S., Sedeek, A.: On the stability of linear systems with fractional-order elements. Chaos Solitons Fract. 40, 2317–2328 (2009)

    Article  MATH  Google Scholar 

  19. Rivero, M., Rogosin, S.V., Machado, J.A.T., Trujillo, J.J.: Stability of fractional order systems. Math. Probl. Eng. 2013, 14 (2013)

  20. Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simulat. 15, 1318–1326 (2010)

  21. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: State variables and transients of fractional order differential systems. Comput. Math. Appl. 64, 3117–3140 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Trigeassou, J.C., Maamri, N., Oustaloup, A.: The infinite state approach: origin and necessity. Comput. Math. Appl. 66, 892–907 (2013)

    Article  MathSciNet  Google Scholar 

  23. Tsatsos, M.: Theoretical and Numerical Study of the Van der Pol Equation. Dissertation, Aristotle University of Thessaloniki, Greece (2006)

    Google Scholar 

  24. Wang, J.R., Lv, L.L., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2530–2538 (2012)

  25. Xie, F., Lin, X.: Asymptotic solution of the van der Pol oscillator with small fractional damping. Phys. Scr. T136, 4 (2009)

    Article  Google Scholar 

  26. Xu, Y., Li, Y., Liu, D., Jia, W., Huang, H.: Responses of Duffing oscillator with fractional damping and random phase. Nonlinear Dyn. 74, 745–753 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zaslavsky, G.M., Stanislavsky, A.A., Edelman, M.: Chaotic and pseudochaotic attractors of perturbed fractional oscillator. arXiv:nlin.CD/050818 (2005)

  28. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to referees for reading this paper, suggestions and recommendations which considerably helped to improve its content. The research was supported by the grant P201/11/0768 of the Czech Science Foundation and by the project CZ.1.07/2.3.00/30.0039 of Brno University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Kisela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čermák, J., Kisela, T. Stability properties of two-term fractional differential equations. Nonlinear Dyn 80, 1673–1684 (2015). https://doi.org/10.1007/s11071-014-1426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1426-x

Keywords

Navigation