Skip to main content
Log in

Spatial frequency range analysis for the nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An analysis of the spatial frequency ranges for the nonlinear Schrödinger equation (NLS), subject to initial conditions with Gaussian and band-limited spatial frequency spectra, is presented in this paper. The analysis is based on a Volterra series representation of the NLS equation. This study reveals the relationship between the spatial frequency ranges of the solution, along with the evolution of the system, and the spatial frequency ranges of the initial conditions, and extends previous results in linear and nonlinear finite dimensional systems. The analysis also reveals a variety of nonlinear phenomena including self-phase modulation, cross-phase modulation and Raman effects modelled using the NLS equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Billings, S.A., Peyton-Jones, J.C.: Mapping nonlinear integrodifferential equations into the frequency domain. Int. J. Control 52, 863–879 (1990)

    Article  MATH  Google Scholar 

  2. Billings, S.A., Tsang, K.M.: Spectral analysis for non-linear systems, Part I: Parametric non-linear spectral analysis. Mech. Syst. Signal Process. 3(4), 319–339 (1989a)

    Article  MATH  Google Scholar 

  3. Billings, S.A., Tsang, K.M.: Spectral analysis for non-linear systems, Part II: Interpretation of non-linear frequency response functions. Mech. Syst. Signal Process. 3(4), 341–359 (1989b)

    Article  MATH  Google Scholar 

  4. Callier, F.M., Winkin, J.: Infinite dimensional system transfer functions. In: Lecture Notes in Control and Systems Sciences, vol. 185, pp. 73–101 (1993)

  5. Curtain, R.F., Morris, K.: Transfer functions of distributed parameter systems: a tutorial. Automatica 45, 1101–1116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Curtain, R.F., Zwart, H.J.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  7. Dull, W., Schneider, G., Wayne, C. E.: Justification of the nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth. In: The 26th Nordic and 1st European-Nordic Congress of Mathematicians, Lund University, Lund, Sweden, 10–13 June 2013

  8. El-Danaf, T.S., Ramadan, M.A., Abd Alaal, F.E.I.: Numerical studies of the cubic non-linear Schrödinger equation. Nonlinear Dyn. 67, 619627 (2012)

    Article  MathSciNet  Google Scholar 

  9. Guo, L.Z., Guo, Y.Z., Billings, S.A., Coca, D., Lang, Z.Q.: A Volterra series representation for a class of nonlinear infinite dimensional systems with periodic boundary conditions. Syst. Control Lett. 62(2), 115–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, L.Z., Guo, Y.Z., Billings, S.A., Coca, D., Lang, Z.Q.: The use of Volterra series in the analysis of nonlinear Schrödinger equation. Nonlinear Dyn. 73(3), 1587–1599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, L.Z., Guo, Y.Z., Billings, S.A., Coca, D., Lang, Z.Q.: A Volterra series approach to the frequency domain analysis of nonlinear viscous Burgers’ equation. Nonlinear Dyn. 70, 17531765 (2012)

    Article  MathSciNet  Google Scholar 

  12. Henderson, K.L., Peregrine, D.H., Dold, J.W.: Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29, 341361 (1999)

    Article  MathSciNet  Google Scholar 

  13. Jiang, Y., Tian, B., Li, M., Wang, P.: Bright hump solitons for the higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 74, 10531063 (2013)

    Article  MathSciNet  Google Scholar 

  14. Lang, Z.Q., Billings, S.A.: Output frequencies of nonlinear systems. Int. J. Control 7(5), 713–730 (1997)

    Article  MathSciNet  Google Scholar 

  15. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Applied Mathematical Sciences. Springer, New York (1983)

    Book  Google Scholar 

  16. Peddanarappagari, K.V., Brandt-Pearce, M.: Volterra series transfer function of single-mode fibers. J. Lightwave Technol. 15, 2232–2241 (1997)

    Article  Google Scholar 

  17. Peyton-Jones, J.C., Billings, S.A.: A recursive algorithm for computing the frequency response of a class of nonlinear difference equation model. Int. J. Control 50, 1925–1940 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rabenstein, R., Trautmann, L.: Multidimensional transfer function models, IEEE Trans. Circuits Syst. I 49(6),break (2002)

  19. Sansen, W.: Distortion in elementary transistor circuits. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. 46(3), 315–325 (1999)

    Article  Google Scholar 

  20. Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems. John Wiley, Chichester (1980)

    MATH  Google Scholar 

  21. Staffans, O.J., Weiss, G.: Transfer functions of regular linear systems. Part II: The system operator and the Lax–Phillips semigroup. Trans. Am. Math. Soc. 354(8), 3229–3262 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Staffans, O.J., Weiss, G.: Transfer functions of regular linear systems. Part III: Inversions and duality. Integr. Eqn. Oper. Theory 49, 517–558 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. CBMS, 106, (2006)

  24. Weiner, D.D., Spina, J.F.: Sinusoidal Analysis and Modelling of Weakly Nonlinear Circuits. Van Nostrand Reinold, New York (1980)

  25. Weiss, G.: Transfer functions of regular linear systems. Part I: Characterizations of regularity. Trans. Am. Math. Soc. 342(2), 827–854 (1994)

    MATH  Google Scholar 

  26. Wu, X.F., Lang, Z.Q., Billings, S.A.: Analysis of output frequencies of nonlinear systems. IEEE Trans. Signal Process. 55(7), 3239–3246 (2007)

    Article  MathSciNet  Google Scholar 

  27. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys 9(2), 190–194 (1968)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the UK Engineering and Physical Sciences Research Council (EPSRC) and the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Z. Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L.Z., Guo, Y.Z., Billings, S.A. et al. Spatial frequency range analysis for the nonlinear Schrödinger equation. Nonlinear Dyn 78, 93–102 (2014). https://doi.org/10.1007/s11071-014-1423-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1423-0

Keywords

Navigation