Skip to main content
Log in

Fractional order control of thermal systems: achievability of frequency-domain requirements

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Fractional order models have been widely used in modeling and identification of thermal systems. General model in this category is considered as the model of thermal systems in this paper, and a fractional order controller is proposed for controlling such systems. The proposed controller is a generalization for the traditional PI controllers. The parameters of this controller can be obtained by using a recently introduced tuning method which can simultaneously ensure the following three requirements: desired phase margin, desired gain crossover frequency, and flatness of the phase Bode plot at this frequency. In this paper, it is found whether simultaneously achieving the mentioned frequency-domain requirements will be possible in the control of the considered thermal systems. Numerical examples are presented to show the usefulness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. It is worth noting that a more practical form for an IFD controller is obtained by replacing the derivative term \(s^{\mu }\) with the proper term \(s^{\mu }/(\gamma s^{\mu }+1)\), i.e., \(C(s)=k_1 \left( {1/s+k_2 s^{\mu }/(\gamma s^{\mu }+1)} \right) \) [19].

References

  1. Tenreiro Machado, J.A., Jesus, I.S., Galhano, A., Cunha, J.B.: Fractional order electromagnetic. Signal Process. 86(10), 2637–2644 (2006)

    Article  MATH  Google Scholar 

  2. Ruge, P., Trinks, C.: Consistent modelling of infinite beams by fractional dynamics. Nonlinear Dyn. 38, 267–284 (2004)

    Article  MATH  Google Scholar 

  3. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific Publishing, Paterson (2001)

    Google Scholar 

  4. Müller, S., Kästner, M., Brummund, J., Ulbricht, V.: A nonlinear fractional viscoelastic material model for polymers. Comput. Mater.Sci. 50, 2938–2949 (2011)

    Article  Google Scholar 

  5. Tavazoei, M.S.: From traditional to fractional PI control: a key for generalization. IEEE Ind. Electron. Mag. 6(3), 41–51 (2012)

    Article  Google Scholar 

  6. Efe, M.O.: Fractional order systems in industrial automation-a survey. IEEE Trans. Ind. Inf. 7(4), 582–591 (2011)

    Article  Google Scholar 

  7. Tavakoli-Kakhki, M., Haeri, M., Tavazoei, M.S.: Study on control input energy efficiency of fractional order control systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 475–482 (2013)

    Article  Google Scholar 

  8. Sabatier, J., Aoun, M., Oustaloup, A., Grégoire, G., Ragot, F., Roy, P.: Fractional system identification for lead acid battery state of charge estimation. Signal Process. 86(10), 2645–2657 (2006)

    Article  MATH  Google Scholar 

  9. Maachou, A., Malti, R., Melchior, P., Battaglia, J.L., Hay, B.: Thermal system identification using fractional models for high temperature levels around different operating points. Nonlinear Dyn. 70, 941–950 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gabano, J.D., Poinot, T., Kanoun, H.: Identification of a thermal system using continuous linear parameter-varying fractional modelling. IET Control Theor. Appl. 5(7), 889–899 (2011)

    Article  MathSciNet  Google Scholar 

  11. Gabano, J.D., Poinot, T.: Fractional modelling and identification of thermal systems. Signal Process. 91(3), 531–541 (2011)

    Article  MATH  Google Scholar 

  12. Gabano, J.D., Poinot, T.: Estimation of thermal parameters using fractional modelling. Signal Process. 91(4), 938–948 (2011)

    Article  MATH  Google Scholar 

  13. Petras, I., Vinagre, B.M., Dorcak, L., and Feliu, V.: ‘Fractional digital control of a heat solid: experimental results. In: Proceedings of the International Carpathian Control Conference, pp. 365–370, Malenovice, Czech Republic, May 27–30, 2002

  14. Luo, Y., Chen, Y.Q., Pi, Y.: Experimental study of fractional order proportional derivative controller synthesis for fractional order systems. Mechatronics 21(1), 204–214 (2011)

    Article  Google Scholar 

  15. Badri, V., Tavazoei, M.S.: On tuning fractional order [proportional-derivative] controllers for a class of fractional order systems. Automatica 49(7), 2297–2301 (2013)

    Article  MathSciNet  Google Scholar 

  16. Badri, V., Tavazoei, M.S.: On tuning FO[PI] controllers for FOPDT processes. Electron. Lett. 49(21), 1326–1328 (2013)

    Google Scholar 

  17. Podlubny, I.: Fractional-order systems and \(\text{ PI }^{\lambda }\text{ D }^{\mu }\)-controllers. IEEE Trans. Autom. Control 41(1), 208–214 (1999)

  18. Tavazoei, M.S.: On type number concept in fractional-order systems. Automatica 49, 301–304 (2013)

    Google Scholar 

  19. Tavakoli-Kakhki, M., Haeri, M.: Fractional order model reduction approach based on retention of the dominant dynamics: application in IMC based tuning of FOPI and FOPID controllers. ISA Trans. 50, 432–442 (2011)

    Article  Google Scholar 

  20. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-order Systems and Controls-Fundamentals and Applications, Advanced Industrial Control Series. Springer, London (2010)

    Book  Google Scholar 

  21. Chen, Y.Q., Kevin, L.M.: Relay feedback tuning of robust PID controllers with Iso-damping property. IEEE Trans. Syst. Man Cybernet. B 35(1), 23–31 (2005)

    Article  Google Scholar 

  22. Melchior, P., Cugnet, M., Sabatier, J., Poty, A., Oustaloup, A.: Flatness control of a fractional thermal system. In: Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds.) Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering. Springer, London (2007)

    Google Scholar 

  23. Victor, S., Melchior, P., Oustaloup, A.: Robust path tracking using flatness for fractional linear MIMO systems: a thermal application. Comput. Math. Appl. 59(5), 1667–1678 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Valério, D., Da Casta, J.S.: An Introduction to Fractional Control. IET, Stevenage (2013)

    Google Scholar 

  25. Chen Y.Q., “Impulse response invariant discretization of fractional order integrators/differentiators is to compute a discrete-time finite dimensional (z) transfer function to approximate s\(^{\rm r}\) with r a real number”, MATLAB Central, 2008. URL: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.doobjectId=21342objectType=FILE

  26. Vidal, A., Baños, A.: Reset compensation for temperature control: experimental application on heat exchangers. Chem. Eng. J. 159, 170–181 (2010)

    Google Scholar 

  27. Chen, Y.Q., Bhaskaran, T., Xue, D.: Practical tuning rule development for fractional order proportional and integral controllers. J. Comput. Nonlinear Dyn. 3(2), 021403(1–8) (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saleh Tavazoei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badri, V., Tavazoei, M.S. Fractional order control of thermal systems: achievability of frequency-domain requirements. Nonlinear Dyn 80, 1773–1783 (2015). https://doi.org/10.1007/s11071-014-1394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1394-1

Keywords

Navigation