Skip to main content

Advertisement

Log in

Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the potential of using a piezoelectric energy harvester to concurrently harness energy from base excitations and vortex-induced vibrations. The harvester consists of a multilayered piezoelectric cantilever beam with a circular cylinder tip mass attached to its free end which is placed in a uniform air flow and subjected to direct harmonic excitations. We model the fluctuating lift coefficient by a van der Pol wake oscillator. The Euler–Lagrange principle and the Galerkin procedure are used to derive a nonlinear distributed-parameter model for a harvester under a combination of vibratory base excitations and vortex-induced vibrations. Linear and nonlinear analyses are performed to investigate the effects of the electrical load resistance, wind speed, and base acceleration on the coupled frequency, electromechanical damping, and performance of the harvester. It is demonstrated that, when the wind speed is in the pre- or post-synchronization regions, its associated electromechanical damping is increased and hence a reduction in the harvested power is obtained. When the wind speed is in the lock-in or synchronization region, the results show that there is a significant improvement in the level of the harvested power which can attain 150 % compared to using two separate harvesters. The results also show that an increase of the base acceleration results in a reduction in the vortex-induced vibrations effects, an increase of the difference between the resonant excitation frequency and the pull-out frequency, and a significant effects associated with the quenching phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sodano, H., Park, G., Inman, D.J.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Digest 36, 197–205 (2004)

    Article  Google Scholar 

  2. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for micro-systems applications. Meas. Sci. Technol. 17, 175–195 (2006)

    Article  Google Scholar 

  3. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, 1–21 (2007)

    Article  Google Scholar 

  4. Tang, L., Padoussis, M.P., Jiang, J.: Cantilevered flexible plates in axial flow: energy transfer and the concept of flutter mill. J. Sound Vib. 326, 263–276 (2009)

    Article  Google Scholar 

  5. Abdelkefi, A.: Global nonlinear analysis of piezoelectric energy harvesting from ambient and aeroelastic vibrations. PhD Dissertation, Virginia Tech (2012)

  6. Roundy, S., Wright, P.K.: A piezoelectric vibration-based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2005)

    Article  Google Scholar 

  7. Inman, D., Grisso, B.: Towards autonomous sensing. Proceedings of Smart Structures and Materials Conference, SPIE, p. 61740T (2006)

  8. Karami, A., Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012)

    Article  Google Scholar 

  9. Abdelkefi, A., Ghommem, M.: Piezoelectric energy harvesting from morphing wing motions for micro air vehicles. Theor. Appl. Mech. Lett. 3, 052001 (2013)

    Article  Google Scholar 

  10. Goldschmidtboeing, F., Woias, P.: Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromech. Microeng. 18, 104013 (2008)

    Article  Google Scholar 

  11. Ben Ayed, S., Abdelkefi, A., Najar, F., Hajj, M.R.: Design and performance of variable-shaped piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. (2013). doi:10.1177/1045389X13489365

  12. Abdelkefi, A., Najar, F., Nayfeh, A.H., Ben Ayed, S.: An energy harvester using piezoelectric cantilever beams undergoing coupled bending–torsion vibrations. Smart Mater. Struct. 20, 115007 (2011)

    Article  Google Scholar 

  13. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R., Najar, F.: Energy harvesting from a multifrequency response of a tuned bending–torsion system. Smart Mater. Struct. 21, 075029 (2012)

    Article  Google Scholar 

  14. Karami, A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330, 5583–5597 (2011)

    Article  Google Scholar 

  15. Tang, L., Yang, Y.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Apl. Phy. Let. 101, 094102 (2013)

    Article  Google Scholar 

  16. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69, 1063–1079 (2012)

    Article  Google Scholar 

  17. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)

    Article  Google Scholar 

  18. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)

    Article  Google Scholar 

  19. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)

    Article  Google Scholar 

  20. Bryant, M., Garcia, E.: Energy harvesting: a key to wireless sensor nodes. Proc. SPIE 7493, 74931W (2009)

    Article  Google Scholar 

  21. Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96, 184103 (2010)

    Article  Google Scholar 

  22. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvester. Nonlinear Dyn. 67, 925–939 (2012)

    Article  MathSciNet  Google Scholar 

  23. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68, 519–530 (2012)

    Article  Google Scholar 

  24. Abdelkefi, A., Nuhait, A.O.: Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22, 095029 (2013)

    Article  Google Scholar 

  25. Akaydin, H.D., Elvin, N., Andreopoulos, Y.: Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials. Exp. Fluids. 49, 291–304 (2010)

    Article  Google Scholar 

  26. Akaydin, H.D., Elvin, N., Andreopoulos, Y.: The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 21, 025007 (2012)

    Article  Google Scholar 

  27. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders. Nonlinear Dyn. 70, 1377–1388 (2012)

    Article  MathSciNet  Google Scholar 

  28. Mehmood, A., Abdelkefi, A., Hajj, M.R., Nayfeh, A.H., Akhtar, I., Nuhait, A.O.: Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 332, 4656–4667 (2013)

    Article  Google Scholar 

  29. Sirohi, J., Mahadik, M.: Piezoelectric wind energy harvester for low-power sensors. J. Intell. Mater. Syst. Struct. 22, 2215–2228 (2011)

    Article  Google Scholar 

  30. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70, 1355–1363 (2012)

    Article  MathSciNet  Google Scholar 

  31. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22, 015014 (2013)

    Article  Google Scholar 

  32. Abdelkefi, A., Yan, Z., Hajj, M.R.: Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries. J. Intell. Mater. Syst. Struct. (2013). doi:10.1177/1045389X13491019

  33. Yang, Y.W., Zhao, L.Y., Tang, L.H.: Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 102, 064105 (2013)

    Article  Google Scholar 

  34. Jung, H.J., Lee, S.W.: The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater. Struct. 20, 055022 (2011)

    Google Scholar 

  35. Abdelkefi, A., Scanlon, J.M., McDowell, E., Hajj, M.R.: Performance enhancement of piezoelectric energy harvesters from wake galloping. Appl. Phys. Lett. 103, 033903 (2013)

    Google Scholar 

  36. Bibo, A., Daqaq, M.F.: Energy harvesting under combined aerodynamic and base excitations. J. Sound Vib. (2013). doi:10.1016/j.jsv.2013.04.009i

  37. Bibo, A., Daqaq, M.F.: Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator. Appl. Phys. Lett. 102, 243904 (2013)

    Article  Google Scholar 

  38. Yan, Z., Abdelkefi, A., Hajj, M.R.: Nonlinear analysis of piezoelectric energy harvesters from ambient and galloping vibrations. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, 8–11 April 2013.

  39. Erturk, A., Inman, D.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009–025026 (2009)

    Article  Google Scholar 

  40. Benaroya, H., Gabbai, R.D.: Modelling vortex-induced fluid–structure interaction. Phil. Trans. R. Soc. A. 366, 1231–1274 (2008)

    Article  MathSciNet  Google Scholar 

  41. Birkhoff, G., Zarantanello, E.H.: Jets Wakes and Cavities. Academic Press, NewYork (1957)

    MATH  Google Scholar 

  42. Bishop, R.E.D., Hassan, Y.: The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proc. R. Soc. Lond. 277, 51–74 (1964)

    Article  Google Scholar 

  43. Hartlen, R.T., Currie, I.G.: A lift-oscillator model for vortex-induced vibrations. J. Eng. Mech. 69, 577–591 (1970)

    Google Scholar 

  44. Skop, R.A., Griffin, O.M.: A model for the vortex-excited resonant response of bluff cylinders. J. Sound Vib. 27, 225–233 (1973)

    Google Scholar 

  45. Skop, R.A., Griffin, O.M.: On a theory for the vortex-excited oscillations of flexible cylindrical structures. J. Sound Vib. 41, 263–274 (1975)

    Article  MATH  Google Scholar 

  46. Skop, R.A., Balasubramanian, S.: A new twist on an old model for vortex-excited vibrations. J. Fluids Struct. 11, 395–412 (1997)

    Article  Google Scholar 

  47. Facchinetti, M.L., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19, 123–140 (2004)

    Article  Google Scholar 

  48. Violette, R., de Langre, E., Szydlowski, J.: Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments. Comput. Struct. 85, 1134–1141 (2007)

    Article  Google Scholar 

  49. Chen, S.S.: Flow-Induced Vibration of Circular Cylindrical Structures. Hemisphere Publishing Corporation, Washington, DC (1987)

    Google Scholar 

  50. Krylov, S., Maimon, R.: Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. J. Vib. Acoust. 126, 332–342 (2004)

    Article  Google Scholar 

  51. Nayfeh, A.H., Mook, D.M.: Nonlinear Oscillations. Wiley, New York (1995). Wiley Classic Library Edition

    Book  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the Program for New Century Excellent Talents in University (NCET-11-0183) and the Fundamental Research Funds for the Central Universities, HUST (2013TS034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, H.L., Abdelkefi, A. & Wang, L. Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn 77, 967–981 (2014). https://doi.org/10.1007/s11071-014-1355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1355-8

Keywords

Navigation