Skip to main content
Log in

Fractional order control of unstable processes: the magnetic levitation study case

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Although a considerable amount of research has been carried out in the field of fractional order controllers, the majority of the results deal with stable processes. Very little research has been reported regarding the design, analysis, and tuning of fractional order controllers for unstable processes. This paper proposes a methodology for designing and tuning fractional order controllers for a class of unstable second-order processes. The design is carried out using the stability analysis of fractional order systems, by means of Riemann surfaces and a proper mapping in the \(w{\text {-}}\hbox {plane}\). The resulting fractional order controllers are implemented using graphical programming on industrial equipment and are validated experimentally using a laboratory scale magnetic levitation unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ionescu, C.: The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics. Springer, London (2013)

    Book  Google Scholar 

  2. Dulf, E.H., Both, R.: Dumitrache, D.C.: Fractional order models for a cryogenic separation column. In: International Conference on Automation, Quality and Testing, Robotics (2010). doi:10.1109/AQTR.2010.5520895

  3. Zhu, L., Knospe, C.R.: Modeling of nonlaminated electromagnetic suspension systems. IEEE-ASME Trans. Mechatron. 15, 59–69 (2010)

    Article  Google Scholar 

  4. Monje, C.A., Vinagre, B.M., Santamara, G.E., Tejado, I.: Auto-tuning of fractional order \(\text{ PI }^{\lambda }\text{ D }^{\mu }\) controllers using a PLC. In: 14th IEEE ETFA Conference (2009)

  5. Xue, D., Zhao, C., Chen, Y.Q.: Fractional order PID control a DC-motor with elastic shaft: A case study. In: Proceedings of the 2006 American Control Conference, pp. 3182–3187 (2006)

  6. Pop (Muresan), C.I., Ionescu, C., De Keyser, R., Dulf, E.H.: Robustness evaluation of fractional order control for varying time delay processes. Signal Image Video Process. 6, 453–461 (2012)

    Article  Google Scholar 

  7. Oustaloup, A., Sabatier, J., Lanusse, P.: From fractional robustness to CRONE control. Fract. Calc. Appl. Anal. 2, 1–30 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Oustaloup, A.: La Commande CRONE: Commande Robuste d’Ordre Non Entiere. Hermes, Paris (1991)

    MATH  Google Scholar 

  9. Podlubny, I.: Fractional-order systems and \(\text{ PI }^{\lambda }\text{ D }^{\mu }\) controllers. IEEE Trans. Autom. Control 44, 208–214 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Xue, D., Chen, Y.: A comparative introduction of four fractional order controllers. In: Proceedings of the 4th IEEE World Congress on Intelligent Control and Automation, pp. 3228–3235 (2002)

  11. Luo, Y., Chen, Y.Q., Wang, C.Y., Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control. 20, 823–831 (2010)

    Article  Google Scholar 

  12. Cao, J.-Y., Cao, B.-G.: Design of fractional order controller based on particle Swarm optimization. Int. J. Control Autom. Syst. 4, 775–781 (2006)

    Google Scholar 

  13. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional Order Systems and Controls: Fundamentals and Applications. Springer, London (2010)

    Book  Google Scholar 

  14. Kheirizad, I., Akbar Jalali, A., Khandani, K.: Stabilization of all-pole unstable delay systems by fractional-order [PI] and [PD] controllers. Trans. Inst. Meas. Control 35, 257–266 (2013)

    Article  Google Scholar 

  15. Tavazoei, M.S., Haeri, M.: Stabilization of unstable fixed points of chaotic fractional order systems by a state fractional PI controller. Eur. J. Control 3, 247–257 (2008)

    Article  MathSciNet  Google Scholar 

  16. Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific Publishing, Singapore (2010)

    Google Scholar 

  17. Yaghoubi, H.: The most important Maglev applications. J. Eng. (2013). doi:10.1155/2013/537986

  18. Gazdoš, F., Dostál, P., Pelikán, R.: Polynomial approach to control system design for a magnetic levitation system. Cybern. Lett. December Issue 1–19 (2009)

  19. Yang, Z.J., Tateishi, M.: Adaptive robust nonlinear control of a magnetic levitation systems. Automatica 31, 1125–1131 (2001)

    Article  Google Scholar 

  20. Chen, S.-Y., Lin, F.-J., Shyu, K.-K.: Direct decentralized neural control for nonlinear MIMO magnetic levitation system. Neurocomputing 72, 3220–3230 (2009)

    Article  Google Scholar 

  21. El Hajjaji, A., Ouladsine, M.: Modeling and nonlinear control of magnetic levitation systems. IEEE Trans. Ind. Electron. 48, 831–838 (2001)

    Article  Google Scholar 

  22. Elahi, T., Nekoubin, A.: Design of magnetic levitation system controller using sliding mode control. Int. Rev. Model. Simul. 4, 1550–1557 (2011)

    Google Scholar 

  23. Glück, T., Kemmetmüller, W., Tump, C., Kugi, A.: A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification. Control Eng. Pract. 19, 146–157 (2011)

    Article  Google Scholar 

  24. Yang, Z.J., Kunitoshi, K., Kanae, S., Wada, K.: Adaptive robust output–feedback control of a magnetic levitation system by k-filter approach. IEEE Trans. Ind. Electron. 55, 390–399 (2008)

    Article  Google Scholar 

  25. Shameli, E., Khamesee, M.B., Huissoon, J.P.: Nonlinear controller design for a magnetic levitation device. Microsyst. Technol. 13, 831–835 (2007)

    Article  Google Scholar 

  26. Shieh, H.J., Siao, J.H., Liu, Y.C.: A robust optimal sliding-mode control approach for magnetic levitation systems. Asian J. Control 12, 480–487 (2010)

    MathSciNet  Google Scholar 

  27. Moghaddam, E.T., Ganji, J.: Sliding mode control of magnetic levitation systems using hybrid extended kalman filter. Energy Sci. Technol. 2, 35–42 (2011)

    Google Scholar 

  28. Chen, C.H.: Nonlinear system control using adaptive neural fuzzy networks based on a modified differential evolution. IEEE Trans. Syst. Man Cybern. Part C 39, 459–473 (2009)

    Article  Google Scholar 

  29. Lin, F.J., Teng, L.T., Shieh, P.H.: Hybrid controller with recurrent neural network for magnetic levitation system. IEEE Trans. Magn. 41, 2260–2269 (2005)

    Article  Google Scholar 

  30. Li, T.H.S., Kuo, C.L., Guo, N.R.: Design of an ep-based fuzzy sliding mode control for a magnetic ball suspension. Syst. Chaos Solut. Fractals 33, 1523–1531 (2007)

    Article  MATH  Google Scholar 

  31. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits-I 49, 363–367 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI– UEFISCDI, project number PN-II-RU-TE-2012-3-0307

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina I. Muresan.

Appendix

Appendix

See Figs. 14, 15, 16, and 17.

Fig. 14
figure 14

The driver used for testing, with the load controlled at a constant current

Fig. 15
figure 15

The VI running on the FPGA

Fig. 16
figure 16

The VI running on the real-time controller

Fig. 17
figure 17

The VI running on the real-time controller for data saving operations, running in parallel with the control loop

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muresan, C.I., Ionescu, C., Folea, S. et al. Fractional order control of unstable processes: the magnetic levitation study case. Nonlinear Dyn 80, 1761–1772 (2015). https://doi.org/10.1007/s11071-014-1335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1335-z

Keywords

Navigation