Skip to main content
Log in

Active vibration control of a dynamical system via negative linear velocity feedback

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 29 March 2014

Abstract

In this paper, a negative velocity feedback is added to a dynamical system which is represented by second-order nonlinear differential equations having quadratic coupling, quadratic, and cubic nonlinearities. The system describes the vibration of the system subjected to multi-parametric excitation forces. The method of multiple scale perturbation technique is applied to obtain the response equation near the simultaneous internal and super-harmonic resonance case of this system. The stability to the system is investigated applying frequency response equations. The numerical solution and the effects of some parameters on the vibrating system are investigated and reported. The simulation results are achieved using MATLAB 7.0 program. A comparison is made with the available published work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(x_{1}\) and \(x_{2}\) :

The two mode amplitudes

\(a_{i} (i= 1,2)\) :

Steady-state amplitudes of the system

\(D_{0}\) and \(D_{1}\) :

Differential operators

\(T_{0}\) and \(T_{1}\) :

Fast and slow time scales, respectively (\(T_{n}=\varepsilon ^{n}t), \; n=0,1\)

t :

Time

\(\omega _{1}\)\(\omega _{2}\) :

The natural angular frequencies of the modes

\(\mu _{i} (i~= 1,2)\) :

The linear damping coefficients

\(\alpha _{1}, \beta _{1}\) :

The cubic nonlinear coefficients

\(\alpha _{2}, \beta _{2}\) :

The quadratic nonlinear coefficients

\(\alpha _{3}\) :

The coupling quadratic nonlinear coefficient

\(F_{j}, P_{j} \, (j = 1,\) :

The excitation force amplitudes

\(2, \ldots , { N})\) :

of the modes

\(G_{i} (i = 1,2)\) :

Positive constants (gains)

\(\Omega \) :

The excitation frequency

\(\varepsilon \) :

A small perturbation parameter

\(\dot{x}_i ,\ddot{x}_i (i=1,2)\) :

The derivatives with respect to t

\(\lambda \) :

Eigenvalue

\(\sigma _{i} (i = 1, 2)\) :

The detuning parameters

\(A_{n0} (n =1, 2)\) :

Functions of \(T_{1}\)

\(\gamma _{i} (i = 1, 2)\) :

Phase of the motion

\(\theta _{i} (i = 1,2)\) :

Phase of the motion

\(p_{i}, q_{i} (i=1, 2)\) :

Real parameters

\(r_{i} (i= 1,2, \ldots , 4)\) :

Constants

References

  1. Haddow, A.G., Barr, A.D., Mook, D.T.: Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure. J. Sound Vibr. 97, 451–473 (1984)

    Article  MathSciNet  Google Scholar 

  2. Nayfeh, A.H., Mook, D.T.: Non-linear Oscillations. Wiley, New York (1979)

    Google Scholar 

  3. Mosekilde, E.: Topics in Nonlinear Dynamics. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  4. Thomson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (1986)

    Google Scholar 

  5. Caroll, J.V., Mehra, P.K.: Bifurcation analysis of nonlinear aircraft dynamics. J. Guidance 5, 529–536 (1982)

    Article  Google Scholar 

  6. Knudsen, C., Slivsgaard, E., Rose, M., True, H., Feldberg, R.: Dynamics of a model of a railroad wheelset. Nonlinear Dyn. 6, 215–236 (1994)

    Article  Google Scholar 

  7. Russell, R.C.H.: A study of the movement of moored ships subjected to wave action. Proc. Inst. Civ. Eng. 12, 379–398 (1959)

    Article  Google Scholar 

  8. Shy, A.: Prediction of jump phenomena in roll-coupled Maneuvers of airplanes. J. Aircr. 14, 375–382 (1977)

    Article  Google Scholar 

  9. Sorensen, C.B., Mosekilde, E., Granazy, P.: Nonlinear dynamics of a thrust vectored aircraft. Phys. Scripta 67, 176–183 (1996)

    Article  Google Scholar 

  10. Thomson, J.M.T.: Complex dynamics of compliant off-shore structures. Proc. R. Soc. Lond. A 387, 407–427 (1983)

    Article  Google Scholar 

  11. Kim, C.H., Lee, C.W., Perkins, N.C.: Nonlinear vibration of sheet metal plates under interacting parametric and external excitation during manufacturing. ASME J. Vibr. Acoust. 127(1), 36–43 (2005)

    Article  Google Scholar 

  12. Roy, A., Chatterjee, A.: Vibrations of a beam in variable contact with a flat surface. ASME J. Vibr. Acoust. 131, 041010 (2009)

    Article  Google Scholar 

  13. El-Badawy, A.A., Nayfeh, A.H.: Control of a directly excited structural dynamic model of F-15 tail section. J. Frankl. Inst. 338, 33–147 (2001)

    Article  MathSciNet  Google Scholar 

  14. Eissa, M., Amer, Y.A.: Vibration control of a cantilever beam subject to both external and parametric excitation. J. Appl. Math. Comput. 152, 611–619 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. EL-Bassiouny, A.F.: Vibration and chaos control of nonlinear torsional vibrating systems. Phys. A 366, 167–186 (2006)

    Article  Google Scholar 

  16. Belhaq, M., Houssni, M.: Suppression of chaos in averaged oscillator driven by external and parametric excitations. Chaos Solitons Fractals 11, 1237–1246 (2000)

    Article  MATH  Google Scholar 

  17. Sorokin, S.V., Ershov, O.A.: Forced and free vibrations of rectangular sandwich plates with parametric stiffness modulation. J. Sound Vib. 259(1), 119–143 (2003)

    Article  Google Scholar 

  18. Pai, P.F., Rommel, B., Schulz, M.J.: Non-linear vibration absorbers using higher order internal resonances. J. Sound Vib. 234(5), 799–817 (2000)

    Article  Google Scholar 

  19. Yaman, M., Sen, S.: Vibration control of a cantilever beam of varying orientation. Int. J. Solids Struct. 44, 1210–1220 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lei, Y., Xu, W., Shen, J., Fang, T.: Global synchronization of two parametrically excited systems using active control. Chaos Solitons Fractals 28, 428–436 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Oueini, S.S., Nayfeh, A.H.: Single-mode control of a cantilever beam under principal parametric excitation. J. Sound Vib. 224(1), 33–47 (1999)

    Article  Google Scholar 

  22. Pai, P.F., Schulz, M.J.: A refined nonlinear vibration absorber. Int. J. Mech. Sci. 42, 537–560 (2000)

    Article  MATH  Google Scholar 

  23. Amer, Y.A., EL-Sayed, A.T.: Vibration suppression of non-linear system via non-linear absorber. Commun. Nonlinear Sci. Numer. Simul. 13, 948–1963 (2008)

    Google Scholar 

  24. Eissa, M., Amer, Y.A., Bauomy, H.S.: Active control of an aircraft tail subject to harmonic excitation. Acta Mech. Sin. 23(4), 451–462 (2007)

    Article  MATH  Google Scholar 

  25. Amer, Y.A., Bauomy, H.S.: Vibration reduction in a 2DOF twin tail system to parametric excitations. Commun. Nonlinear Sci. Numer. Simul. 14(1), 560–573 (2009)

    Article  Google Scholar 

  26. Amer, Y.A., Bauomy, H.S., Sayed, M.: Vibration suppression in a twin-tail system to parametric and external excitations. Comput. Math. Appl. 58, 1947–1964 (2009)

    Article  MATH  Google Scholar 

  27. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank the reviewers for their valuable comments and suggestions for improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Bauomy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauomy, H.S. Active vibration control of a dynamical system via negative linear velocity feedback. Nonlinear Dyn 77, 413–423 (2014). https://doi.org/10.1007/s11071-014-1306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1306-4

Keywords

Navigation