Skip to main content
Log in

Sticking and nonsticking orbits for a two-degree-of-freedom oscillator excited by dry friction and harmonic loading

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider a system composed of two masses connected by linear springs. One of the masses is in contact with a rough surface. Friction force, with Coulomb’s characteristics, acts between the mass and the surface. Moreover, the mass is also subjected to a harmonic external force. Several periodic orbits are obtained in closed form. A first kind of orbits involves sticking phases: during these parts of the orbit, the mass in contact with the rough surface remains at rest for a finite time. Another kind of orbits includes one or more stops of the mass with zero duration. Normal and abnormal stops are obtained. Moreover, for some of these periodic solutions, we prove that symmetry in space and time occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andreaus, U., Casini, P.: Dynamics of friction oscillators excited by a moving base and/or driving force. J. Sound Vib. 245(4), 685–699 (2001)

    Article  Google Scholar 

  2. Awrejcewicz, J., Olejnik, P.: Stick-slip dynamics of a two-degree-of-freedom system. Int. J. Bifurc. Chaos 13(4), 843–861 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Awrejcewicz, J., Fečkan, M., Olejnik, P.: On continuous approximation of discontinuous systems. Nonlinear Anal. 62(7), 1317–1331 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Awrejcewicz, J., Olejnik, P.: Friction pair modeling by a 2-dof system: numerical and experimental investigations. Special Issue Int. J. Bifurc. Chaos 15(6), 1931–1944 (2005)

    Article  Google Scholar 

  5. Awrejcewicz, J., Holicke, M.: Smooth and nonsmooth high dimensional chaos and the Melnikov-type methods. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  6. Csernak, G., Stepan, G.: On the periodic response of a harmonically excited dry friction oscillator. J. Sound Vib. 295(4), 649–658 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Galvanetto, U., Bishop, S.R.: Stick-slip vibrations of a 2-degree-of-freedom geophysical fault model. Int. J. Mech. Sci. 36(8), 683–698 (1994)

    Article  MATH  Google Scholar 

  8. Guo, K., Zhang, X., Li, H., Meng, G.: Non-reversible friction modeling and identification. Arch. Appl. Mech. 78(10), 795–809 (2008)

    Article  MATH  Google Scholar 

  9. Hetzler, H., Schwarzer, D., Seemann, W.: Analytical investigation of steady-state stability and Hopf-bifurcations occurring in sliding friction oscillators with application to low frequency disc brake noise. Commun. Nonlinear Sci. Numer. Simul. 12(1), 83–99 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hoffmann, N., Fisher, M., Allgaier, R., Gaiul, L.: A minimal model of studying properties of the mode-occurring type instability in friction induced oscillations. Mech. Res. Commun. 29, 197–205 (2002)

    Article  MATH  Google Scholar 

  11. Hong, H.K., Liu, C.S.: Coulomb friction oscillator: modelling and responses to harmonic loads and base excitations. J. Sound Vib. 229(5), 1171–1192 (2000)

    Article  MATH  Google Scholar 

  12. Hong, H.K., Liu, C.S.: Non-sticking formulae for Coulomb friction under harmonic loading. J. Sound Vib. 244(5), 883–898 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kirillov, O.N.: Subcritical flutter in the acoustics of friction. Proc. Royal Soc. A 464, 2321–2339 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pascal, M.: Dynamics of coupled oscillators excited by dry friction. ASME J. Comput. Nonlinear Dyn. 3(3), 20–26 (2008)

    Article  MathSciNet  Google Scholar 

  15. Pascal, M.: Two models of non smooth dynamical systems. Int. J. Bifurc. Chaos 21(10), 2853–2860 (2011)

    Google Scholar 

  16. Pascal, M.: New events in stick-slip oscillators behaviour. J. Appl. Math. Mech. 75(3), 402–409 (2011)

    Article  MathSciNet  Google Scholar 

  17. Pascal, M.: New limit cycles of dry friction oscillators under harmonic load. Nonlinear Dyn. 70, 1435–1443 (2012)

    Article  MathSciNet  Google Scholar 

  18. Sinou, J.-J., Jezequel, L.: Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping. Eur. J. Mech. A 256(1), 106–122 (2007)

    Article  Google Scholar 

  19. von Wagner, U., Hochlenert, D., Hagedorn, P.: Minimal models for disc brake squeal. J. Sound Vib. 302, 527–539 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine Pascal.

Appendix 1

Appendix 1

$$\begin{aligned} H_{i} (t)&= \Lambda B_i (t)\Lambda ^{-1},\,(i=1,2,3) \nonumber \\ B_{2} (t)&= \left( {\begin{array}{ll} s_{1} /\omega _1 &{}\quad 0 \\ 0 &{}\quad s_2 /\omega _2 \\ \end{array}} \right) ,\;s_j =\sin (\omega _j t)\;(j=1,2) \nonumber \\ B_{1} (t)&= B^{\prime }_2 (t),\;B_3 (t)=B^{\prime \prime }_2 (t) \end{aligned}$$
(55)

The natural frequencies (\(\omega _{1},~\omega _{2})\) are the roots of the characteristic equation:

$$\begin{aligned} D(s^{2})\equiv \det (K-Is^{2})=0,\quad K=\left( {\begin{array}{l} \;1\quad \quad -\chi \\ -\chi \eta \;\;\chi \eta \\ \end{array}} \right) \nonumber \\ \end{aligned}$$
(56)

The eigenvectors \(\psi _j =\left( {\begin{array}{l} 1 \\ \lambda _j \\ \end{array}} \right) ,(j=1,2)\) are defined by (\(K~-~I\omega _{j}^{2})\psi _{j}~=~0\)

These matrices fulfil the following property

$$\begin{aligned}&H_1^2 (t)-H_2 (t)H_3 (t)=0\end{aligned}$$
(57)
$$\begin{aligned}&\Gamma _i (t)=\Sigma \gamma _i (t)\Sigma ^{-1},\quad (i=1,2,3) \nonumber \\&\gamma _2 (t)=\left( {\begin{array}{ll} \sin t\quad 0 \\ 0\quad \quad \;t \\ \end{array}} \right) ,\quad \Sigma =\left( {\begin{array}{l} 1\;\;\chi \\ 0\;\;1 \\ \end{array}} \right) \nonumber \\&\gamma _1 (t)=\gamma ^{\prime }_2 (t),\;\gamma _3 (t)=\gamma ^{\prime \prime }_2 (t) \end{aligned}$$
(58)

The matrices \(\Gamma _{i}(t)\) fulfil also the property

$$\begin{aligned}&\Gamma _1^2 (t)-\Gamma _2 (t)\Gamma _3 (t)=0 \end{aligned}$$
(59)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascal, M. Sticking and nonsticking orbits for a two-degree-of-freedom oscillator excited by dry friction and harmonic loading. Nonlinear Dyn 77, 267–276 (2014). https://doi.org/10.1007/s11071-014-1291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1291-7

Keywords

Navigation