Skip to main content
Log in

Non-Filippov dynamics arising from the smoothing of nonsmooth systems, and its robustness to noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Switch-like behaviour in dynamical systems may be modelled by highly nonlinear functions, such as Hill functions or sigmoid functions, or alternatively by piecewise-smooth functions, such as step functions. Consistent modelling requires that piecewise-smooth and smooth dynamical systems have similar dynamics, but the conditions for such similarity are not well understood. Here we show that by smoothing out a piecewise-smooth system one may obtain dynamics that is inconsistent with the accepted wisdom — so-called Filippov dynamics — at a discontinuity, even in the piecewise-smooth limit. By subjecting the system to white noise, we show that these discrepancies can be understood in terms of potential wells that allow solutions to dwell at the discontinuity for long times. Moreover we show that spurious dynamics will revert to Filippov dynamics, with a small degree of stochasticity, when the noise magnitude is sufficiently large compared to the order of smoothing. We apply the results to a model of a dry-friction oscillator, where spurious dynamics (inconsistent with Filippov’s convention or with Coulomb’s model of friction) can account for different coefficients of static and kinetic friction, but under sufficient noise the system reverts to dynamics consistent with Filippov’s convention (and with Coulomb-like friction).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aizerman, M.A., Pyatnitskii, E.S.: Fundamentals of the theory of discontinuous systems I, II. Automat. Remote Control 35, 1066–1079, 1242–1292 (1974)

  2. Akay, A.: Acoustics of friction. J. Acoust. Soc. Am. 111(4), 1525–1548 (2002)

    Article  Google Scholar 

  3. Baule, A., Cohen, E.G.D., Touchette, H.: A path integral approach to random motion with nonlinear friction. J. Phys. A 43(2), 025003 (2010)

    Article  MathSciNet  Google Scholar 

  4. Baule, A., Touchette, H., Cohen, E.G.D.: Stick-slip motion of solids with dry friction subject to random vibrations and an external field. Nonlinearity 24, 351–372 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bender, C.M., Orszag, S.A.: Advanced mathematical methods for scientists and engineers I. Asymptotic methods and perturbation theory. Springer, New York (1999)

    Book  MATH  Google Scholar 

  6. Bengisu, M.T., Akay, A.: Stick-slip oscillations: dynamics of friction and surface roughness. J. Acoust. Soc. Am. 105(1), 194–205 (1999)

    Article  Google Scholar 

  7. Berry, M.V.: Uniform asymptotic smoothing of Stokes’s discontinuities. Proc. R. Soc. A 422, 7–21 (1989)

    Article  MATH  Google Scholar 

  8. Bliman, P.A., Sorine, M.: Easy-to-use realistic dry friction models for automatic control. In: Proceedings of 3rd European Control Conference, pp. 3788–3794 (1995)

  9. Broucke, M.E., Pugh, C., Simic, S.: Structural stability of piecewise smooth systems. Comput. Appl. Math. 20(1–2), 51–90 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Buckdahn, R., Ouknine, Y., Quincampoix, M.: On limiting values of stochastic differential equations with small noise intensity tending to zero. Bull. Sci. Math. 133, 229–237 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Colombo, A., di Bernardo, M., Hogan, S.J., Jeffrey, M.R.: Bifurcations of piecewise smooth flows: perspectives, methodologies and open problems. Phys. D 241(22), 1845–1860 (2012)

    Article  MathSciNet  Google Scholar 

  12. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, Berlin (2008)

    Google Scholar 

  13. di Bernardo, M., Johansson, K.H., Jönsson, U., Vasca, F.: On the robustness of periodic solutions in relay feedback systems. In: IFAC 15th Triennial World Congress, Barcelona, Spain (2002)

  14. Dercole, F., Gragnani, A., Rinaldi, S.: Bifurcation analysis of piecewise smooth ecological models. Theor. Popul. Biol. 72, 197–213 (2007)

    Article  MATH  Google Scholar 

  15. Feeny, B., Moon, F.: Chaos in a forced dry-friction oscillator: experiments and numerical modelling. J. Sound Vib. 170(3), 303–323 (1994)

    Article  MATH  Google Scholar 

  16. Feldmann, J.: Roughness-induced vibration caused by a tangential oscillating mass on a plate. J. Vib. Acoust. 134(4), 041,002 (2012)

    Google Scholar 

  17. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic, Dortrecht (1988)

    Book  Google Scholar 

  18. Gardiner, C.W.: Stochastic Methods. A Handbook for the Natural and Social Sciences. Springer, New York (2009)

    MATH  Google Scholar 

  19. de Gennes, P.G.: Brownian motion with dry friction. J. Stat. Phys. 119(5), 953–962 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grasman, J., van Herwaarden, O.A.: Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications. Springer, New York (1999)

    Book  MATH  Google Scholar 

  21. Guran, A., Pfeiffer, F., Popp, K. (eds.): Dynamics with Friction: Modeling, Analysis and Experiment I & II, Series B, vol. 7. World Scientific, Singapore (1996)

  22. Hájek, O.: Discontinuous differential equations, I. J. Differ. Equ. 32(2), 149–170 (1979)

    Article  MATH  Google Scholar 

  23. Heading, J.: An Introduction to Phase-Integral Methods. Methuen, London, New York (1962)

  24. Hermes, H.: Discontinuous vector fields and feedback control. In: Differential Equations and Dynamical Systems, pp. 155–165. Elsevier, Amsterdam (1967)

  25. Jeffrey, M.R.: Non-determinism in the limit of nonsmooth dynamics. Phys. Rev. Lett. 106(25), 254103 (2011)

    Article  Google Scholar 

  26. Jeffrey, M.R.: Errors and asymptotics in the dynamics of switching. submitted (2013)

  27. Jeffrey, M.R., Champneys, A.R., di Bernardo, M., Shaw, S.W.: Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator. Phys. Rev. E 81(1), 016213–016222 (2010)

    Article  Google Scholar 

  28. Jeffrey, M.R., Hogan, S.J.: The geometry of generic sliding bifurcations. SIAM Rev. 53(3), 505–525 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Krim, J.: Friction at macroscopic and microscopic length scales. Am. J. Phys. 70, 890–897 (2002)

    Article  Google Scholar 

  30. Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bif. Chaos 13, 2157–2188 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Le Bot, A., Bou Chakra, E.: Measurement of friction noise versus contact area of rough surfaces weakly loaded. Tribol. Lett. 37, 273–281 (2010)

    Article  Google Scholar 

  32. Leine, R.I., Nijmeijer, H.: Dynamics and bifurcations of non-smooth mechanical systems. Lecture Notes in Applied and Computational Mathematics, vol. 18. Springer, Berlin (2004)

  33. Oestreich, M., Hinrichs, N., Popp, K.: Bifurcation and stability analysis for a non-smooth friction oscillator. Arch. Appl. Mech. 66, 301–314 (1996)

    Article  MATH  Google Scholar 

  34. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. R 17, 1–62 (2005)

    Google Scholar 

  35. Piltz, S.H., Porter, M.A., Maini, P.K.: Prey switching with a linear preference trade-off. preprint arXiv:1302.6197 (2013)

  36. Schuss, Z.: Theory and Applications of Stochastic Processes. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  37. Siegert, A.J.: On the first passage time probability problem. Phys. Rev. 81(4), 617–623 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  38. Simpson, D.J.W.: On resolving singularities of piecewise-smooth discontinuous vector fields via small perturbations. Discret. Contin. Dyn. Syst. (2014)

  39. Simpson, D.J.W., Kuske, R.: Stochastically perturbed sliding motion in piecewise-smooth systems. arxiv.org/abs/ 1204.5792 (2012)

  40. Simpson, D.J.W., Kuske, R.: The positive occupation time of Brownian motion with two-valued drift and asymptotic dynamics of sliding motion with noise. submitted (2013)

  41. Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)

    MATH  Google Scholar 

  42. Teixeira, M.A., Llibre, J., da Silva, P.R.: Regularization of discontinuous vector fields on \(R^3\) via singular perturbation. J. Dyn. Differ. Equ. 19(2), 309–331 (2007)

    Article  MATH  Google Scholar 

  43. Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Automat. Control 22, 212 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  44. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  45. Various: special issue on dynamics and bifurcations of nonsmooth systems. Phys. D 241(22), 1825–2082 (2012)

  46. Wojewoda, J., Andrzej, S., Wiercigroch, M., Kapitaniak, T.: Hysteretic effects of dry friction: modelling and experimental studies. Phil. Trans. R. Soc. A 366, 747–765 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Jeffrey.

Appendix: Supplementary calculations

Appendix: Supplementary calculations

1.1 Derivation of (5.9)

The probability that a solution to (4.6), starting from \(\tilde{y} = 0\), eventually escapes \([-\tilde{r},\tilde{r}]\), is \(1\).

Consequently integration of (5.1) with respect to \(\tilde{t}\) over \([0,\infty )\) yields

$$\begin{aligned} -\delta (\tilde{{y}}) = \frac{d}{d\tilde{{y}}} \left( -\phi R + \frac{\tilde{\kappa }^2}{2} \frac{dR}{d\tilde{{y}}} \right) , \end{aligned}$$
(9.1)

where we have let \(R(\tilde{{y}}) = \int \nolimits _0^\infty p(\tilde{{y}},\tilde{t}) \,d\tilde{t}\). To solve (9.1) subject to the boundary conditions \(R(\pm \tilde{r}) = 0\), we first integrate (9.1) to obtain

$$\begin{aligned} -\phi R + \frac{\tilde{\kappa }^2}{2} \frac{dR}{d\tilde{{y}}} = C - H(\tilde{{y}}), \end{aligned}$$
(9.2)

where \(H\) is the Heaviside function and \(C\) is a constant. Through the use of an integrating factor, further integration produces

$$\begin{aligned} R(\tilde{{y}}) = \frac{2}{\tilde{\kappa }^2} \,\mathrm{e}^{\frac{-2 V(\tilde{{y}})}{\tilde{\kappa }^2}} \int \limits _{\tilde{{y}}}^{\tilde{r}} \left( H(v) - C \right) \mathrm{e}^{\frac{2 V(v)}{\tilde{\kappa }^2}}\,dv, \end{aligned}$$
(9.3)

where we have chosen the limits of integration to automatically satisfy \(R(\tilde{r}) = 0\). The requirement \(R(-\tilde{r}) = 0\) implies that \(C\) is given by (5.10). By (5.8) we have \(\tilde{{T}} = \int \nolimits _{-\tilde{r}}^{\tilde{r}} R(u) \,du\), and the expression (5.9) follows from reversing the order of integration.

1.2 Bounding \(C\) for (6.7)

Here we derive an upper bound for \(C\) (5.10). Given any \(\Delta > 0\), we have

$$\begin{aligned} \int \limits _{-\tilde{r}}^0 \mathrm{e}^{\frac{2 V(w)}{\tilde{\kappa }^2}} \,dw&\ge \int \limits _{-\tilde{r}}^{-1} \mathrm{e}^{\frac{2 V(w)}{\tilde{\kappa }^2}} \,dw = \frac{\tilde{\kappa }^2}{2 a^-} \left( \mathrm{e}^{\frac{2 a^- (\tilde{r} - 1)}{\tilde{\kappa }^2}} - 1 \right) \nonumber \\&\ge \frac{\tilde{\kappa }^2 (1-\Delta )}{2 a^-} \,\mathrm{e}^{\frac{2 a^- \tilde{r} (1-\Delta )}{\tilde{\kappa }^2}}, \end{aligned}$$
(9.4)

for sufficiently small \(\varepsilon , \kappa \) and \(r\). We let \(V_\mathrm{max} = \mathrm{max}_{w \in [0,1]} V(w)\). Then

$$\begin{aligned} \int \limits _0^{\tilde{r}} \mathrm{e}^{\frac{2 V(w)}{\tilde{\kappa }^2}} \,dw&\le \mathrm{e}^{\frac{2 V_\mathrm{max}}{\tilde{\kappa }^2}} \left( 1 + \int \limits _1^{\tilde{r}} \mathrm{e}^{\frac{-2 a^+ (w-1)}{\tilde{\kappa }^2}} \,dw \right) \nonumber \\&\le \left( 1 + \frac{\tilde{\kappa }^2}{2 a^+} \right) \mathrm{e}^{\frac{2 V_\mathrm{max}}{\tilde{\kappa }^2}}. \end{aligned}$$
(9.5)

From (5.10), we have

$$\begin{aligned} C&= \frac{1}{1 + \frac{\int _{-\tilde{r}}^0 \mathrm{e}^{\frac{2 V(w)}{\tilde{\kappa }^2}} \,dw}{\int _0^{\tilde{r}} \mathrm{e}^{\frac{2 V(w)}{\tilde{\kappa }^2}} \,dw}} \le \frac{1}{1 + \frac{\frac{\tilde{\kappa }^2 (1-\Delta )}{2 a^-} \,\mathrm{e}^{\frac{2 a^- \tilde{r} (1-\Delta )}{\tilde{\kappa }^2}}}{\left( 1 + \frac{\tilde{\kappa }^2}{2 a^+} \right) \mathrm{e}^{\frac{2 V_\mathrm{max}}{\tilde{\kappa }^2}}}} \nonumber \\&\le \frac{(1+\Delta ) a^-}{1-\Delta } \left( \frac{1}{a^+} + \frac{2}{\tilde{\kappa }^2} \right) \mathrm{e}^{\frac{-2 a^- \tilde{r} \left( 1-\Delta -\frac{V_\mathrm{max}}{\tilde{r}} \right) }{\tilde{\kappa }^2}} \nonumber \\&\le \left( 1 + 4 \Delta \right) a^- \left( \frac{1}{a^+} + \frac{2}{\tilde{\kappa }^2} \right) \mathrm{e}^{\frac{-2 a^- \tilde{r} \left( 1-2\Delta \right) }{\tilde{\kappa }^2}} \;, \end{aligned}$$
(9.6)

where, in the last inequality we have assumed \(\tilde{r}\) is sufficiently large that \(\frac{V_\mathrm{max}}{\tilde{r}} \le \Delta \). Substituting \(\Delta = \frac{1}{4}\) gives the result in the text.

1.3 The double integral (6.11)

The double integral is independent of \(\frac{1}{\tilde{r}}\), so we simply evaluate it asymptotically in \(\tilde{\kappa }\). Since the maximum of the exponent is attained at \((u,v) = (\tilde{{y}}_1,\tilde{{y}}_2)\), we employ the integral substitution:

$$\begin{aligned} \hat{u} = \frac{u - \tilde{{y}}_1}{\tilde{\kappa }} \hat{v} = \frac{v - \tilde{{y}}_2}{\tilde{\kappa }}. \end{aligned}$$
(9.7)

This yields

$$\begin{aligned}&\frac{2}{\tilde{\kappa }^2} \int \limits _0^1 \mathrm{e}^{\frac{2 V(v)}{\tilde{\kappa }^2}} \int \limits _{-1}^v \mathrm{e}^{\frac{-2 V(u)}{\tilde{\kappa }^2}} \,du \,dv = 2 \int \limits _{\frac{-\tilde{{y}}_2}{\tilde{\kappa }}}^{\frac{1 - \tilde{{y}}_2}{\tilde{\kappa }}} \int \limits _{\frac{-1 - \tilde{{y}}_1}{\tilde{\kappa }}}^{\hat{v} + \frac{\tilde{{y}}_2 - \tilde{{y}}_1}{\tilde{\kappa }}}\nonumber \\&\quad \times \,\mathrm{e}^{\frac{-2}{\tilde{\kappa }^2} \left( V(\tilde{{y}}_1) + \frac{1}{2} V''(\tilde{{y}}_1) \tilde{\kappa }^2 \hat{u}^2 - V(\tilde{{y}}_2) - \frac{1}{2} V''(\tilde{{y}}_2) \tilde{\kappa }^2 \hat{v}^2 + O(\tilde{\kappa }^3) \right) } \,d\hat{u} \,d\hat{v}.\nonumber \\ \end{aligned}$$
(9.8)

Laplace’s method justifies taking the limits of integration to \(\pm \infty \), with which explicit integration produces

$$\begin{aligned}&\frac{2}{\tilde{\kappa }^2} \int \limits _0^1 \mathrm{e}^{\frac{2 V(v)}{\tilde{\kappa }^2}} \int \limits _{-1}^v \mathrm{e}^{\frac{-2 V(u)}{\tilde{\kappa }^2}} \,du \,dv\nonumber \\&\quad = 2 \mathrm{e}^{\frac{2}{\tilde{\kappa }^2} \left( V(\tilde{{y}}_2) - V(\tilde{{y}}_1) \right) } \left( \frac{\sqrt{\pi }}{\sqrt{V''(\tilde{{y}}_1)}} \frac{\sqrt{\pi }}{\sqrt{-V''(\tilde{{y}}_2)}} + O(\tilde{\kappa }) \right) .\nonumber \\ \end{aligned}$$
(9.9)

Note \(V''(\tilde{{y}}) = -A'(\tilde{{y}})\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffrey, M.R., Simpson, D.J.W. Non-Filippov dynamics arising from the smoothing of nonsmooth systems, and its robustness to noise. Nonlinear Dyn 76, 1395–1410 (2014). https://doi.org/10.1007/s11071-013-1217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1217-9

Keywords

Navigation