Skip to main content
Log in

A differential flatness theory approach to observer-based adaptive fuzzy control of MIMO nonlinear dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper proposes a solution to the problem of observer-based adaptive fuzzy control for MIMO nonlinear dynamical systems (e.g. robotic manipulators). An adaptive fuzzy controller is designed for a class of nonlinear systems, under the constraint that only the system’s output is measured and that the system’s model is unknown. The control algorithm aims at satisfying the \(H_\infty \) tracking performance criterion, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. After transforming the MIMO system into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system’s parameters. The nonlinear terms which appear in the control inputs are approximated with the use of neuro-fuzzy networks. Moreover, since only the system’s output is measurable the complete state vector has to be reconstructed with the use of a state observer. It is shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis, it is proven that the proposed observer-based adaptive fuzzy control scheme results in \(H_{\infty }\) tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rigatos, G.G.: Adaptive fuzzy control for field-oriented induction motor drives, Neural Comput. Appl. 21(1), 9–23 (2012)

    Google Scholar 

  2. Rigatos, G.G.: Flatness-based adaptive fuzzy control for nonlinear dynamical systems, AIM 2011, IEEE/ASME, International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary, July (2011)

  3. Rigatos, G.G.: Adaptive fuzzy control of MIMO dynamical systems using differential flatness theory. IEEE ISIE 2012, 21st International Symposium on Industrial Electronics. Hangzhou, China (May 2012)

  4. Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  5. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  6. Tong, S., Li, H.-X., Chen, G.: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans. Syst. Cybern. B 34(1), 770–775 (2004)

    Article  Google Scholar 

  7. Li, H.X., Tong, S.: A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans. Fuzzy Syst. 11(1), 24–35 (2003)

    Article  Google Scholar 

  8. Song, T., Bin, C., Wang, Y.: Fuzzy adaptive output feedback control for MIMO nonlinear systems. Fuzzy Sets Syst. 156, 285–299 (2005)

    Article  Google Scholar 

  9. Chen, C.S.: Dynamic structure adaptive neural fuzzy control for MIMO uncertain nonlinear systems. Inf. Sci. 179, 2676–2688 (2009)

    Article  MATH  Google Scholar 

  10. Tong, S., Li, Y.: Observer-based adaptive control for strict-feedback nonlinear systems. Fuzzy Sets Syst. 160, 1749–1764 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, C.H., Lin, C.M., Chen, T.Y.: Intelligent adaptive control for MIMO uncertain nonlinear systems. Expert Syst. Appl. 35, 865–877 (2008)

    Article  Google Scholar 

  12. Suresh, S., Kannan, N., Sundararajan, N., Saratchandran, P.: Neural adaptive control for vibration suppression in composite fin-tip of aircraft. Int. J. Neural Syst. 18(3), 219–231 (2008)

    Article  Google Scholar 

  13. Liu, M., Zhang, S.: An LMI approach to design \(H_{\infty }\) controllers for discrete-time nonlinear systems based on unified models. Int. J. Neural Syst. 18(5), 443–452 (2008)

    Article  Google Scholar 

  14. Alanis, A.Y., Sanchez, E.N., Ricalde, R.J., Perez-Cisneros, M.A.: Discrete-time reduced order neural observers for uncertain nonlinear systems. Int. J. Neural Syst. 20(1), 29–38 (2010)

    Article  Google Scholar 

  15. Puscasu, G., Codres, B.: Nonlinear system identification and control based on modular neural networks. Int. J. Neural Syst. 21(4), 319–334 (2011)

    Article  Google Scholar 

  16. Lin, C.M., Ting, A.B., Hsu, C.F., Chung, C.M.: Adaptive control for MIMO uncertain nonlinear systems using recurrent wavelet neural network. Int. J. Neural Syst. 21(6), 37–50 (2011)

    Google Scholar 

  17. Lin, Y.J., Wang, W.: Adaptive fuzzy control for a class of uncertain non-affine nonlinear systems. Inf Sci 177, 3901–3917 (2007)

    Article  Google Scholar 

  18. Tong, S., Chen, B., Wang, Y.: Fuzzy adaptive output feedback control for MIMO nonlinear systems. Fuzzy Sets Syst. 156, 285–299 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chiu, C.S.: Mixed feedforward/feedback adaptive fuzzy control for a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 14(6), 716–727 (2006)

    Article  Google Scholar 

  20. Purwar, S., Kar, I.N., Jha, A.N.: Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints. Fuzzy Sets Syst. 152, 651–664 (2004)

    Article  MathSciNet  Google Scholar 

  21. Gao, Y., Er, M.J.: Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 11(4), 462–477 (2003)

    Article  Google Scholar 

  22. Chen, B., Liu, X., Tong, S.: Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems. IEEE Trans. Fuzzy Syst. 15(2), 287–300 (2007)

    Article  Google Scholar 

  23. Chen, C.S.: Robust self-organising neural-fuzzy control with uncertainty observer for MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 19(4), 694–706 (2011)

    Article  Google Scholar 

  24. Li, T.S., Tong, S.C., Feng, G.: A novel robust adaptive-fuzzy-tracking control for a class of nonlinear multi-input multi-output systems. IEEE Trans. Fuzzy Syst. 18(1), 150–160 (2010)

    Article  Google Scholar 

  25. Rudolph, J.: Flatness based control of distributed Parameter systems: examples and computer exercises from various technological domains. Shaker, Aachen (2003)

  26. Sira-Ramirez, H., Agrawal, S.: Differentially Flat Systems. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  27. Rigatos, G.G.: Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotcs and Industrial Engineering. Springer, Berlin (2011)

    Book  Google Scholar 

  28. Lévine, J.: On necessary and sufficient conditions for differential flatness. Appl. Algebra Eng. Commun. Comput. 22(1), 47–90 (2011)

    Article  MATH  Google Scholar 

  29. Hagenmeyer, V., Delaleau, E.: Robustness analysis of exact feedforward linearization based on differential flatness. Automatica 39, 1941–1946 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hagenmeyer, V., Delaleau, E.: Robustness analysis with respect to exogenous perturbations for flatness-based exact feedforward linearization. IEEE Trans. Autom. Control 55(3), 727–731 (2010)

    Article  MathSciNet  Google Scholar 

  31. Fliess, M., Mounier, H.: Tracking control and \(\pi \)-freeness of infinite dimensional linear systems, In: Picci, G., Gilliam, D.S. (eds.), Dynamical Systems, Control, Coding and Computer Vision, vol. 258, pp. 41–68. Birkhaüser (1999)

  32. Rigatos, G.G.: Extended Kalman and Particle Filtering for sensor fusion in motion control of mobile robots. Math. Comput. Simul. 81(3), 590–607 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Villagra, J., d’Andrea-Novel, B., Mounier, H., Pengov, M.: Flatness-based vehicle steering control strategy with SDRE feedback gains tuned via a sensitivity approach. IEEE Trans. Control Syst. Technol. 15, 554–565 (2007)

    Article  Google Scholar 

  34. Laroche, B., Martin, P., Petit, N.: Commande par platitude: Equations différentielles ordinaires et aux derivées partielles. Ecole Nationale Supérieure des Techniques Avancées, Paris (2007)

    Google Scholar 

  35. Martin, Ph., Rouchon, P.: Systèmes plats: planification et suivi des trajectoires. Journées X-UPS, École des Mines de Paris, Centre Automatique et Systèmes, Mai (1999)

  36. Rigatos, G.G.: Adaptive fuzzy control with output feedback for \(H_{\infty }\) tracking of SISO nonlinear systems. Int. J. Neural Syst. 18(4), 1–16 (2008)

  37. Rigatos, G.G., Tzafestas, S.G.: Adaptive fuzzy control for the ship steering problem. J. Mech. 16(6), 479–489 (2006)

    Google Scholar 

  38. Rigatos, G.G.: Adaptive fuzzy control of DC motors using state and output feedback. Electr. Power Syst. Res. 79(11), 1579–1592 (2009)

    Article  Google Scholar 

  39. Bououden, S., Boutat, D., Zheng, G., Barbot, J.P., Kratz, F.: A triangular canonical form for a class of 0-flat nonlinear systems. Int. J. Control Taylor Francis 84(2), 261–269 (2011)

    MATH  MathSciNet  Google Scholar 

  40. Rigatos, G.G.: A derivative-free Kalman Filtering approach to state estimation-based control of nonlinear dynamical systems. IEEE Trans. Ind. Electron. 59(10), 3987–3997 (2012)

    Article  Google Scholar 

  41. Kurylowicz, A., Jaworska, I., Tzafestas, S.G.: Robust stabilizing control: an overview, applied control: current trends and modern methodologies. In Tzafestas S.G. (ed.), Marcel Dekker, pp. 289–324 (1993)

  42. Lublin, L., Athans, M.: An experimental comparison of and designs for interferometer testbed. In: Francis, B., Tannenbaum, A. (eds.) Lectures Notes in Control and Information Sciences: Feedback Control, Nonlinear Systems and Complexity. Springer, pp. 150–172 (1995)

  43. Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control 34, 831–847 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  44. Yousef, H.A., Hamdy, M., Shafiq, M.: Flatness-based adaptive fuzzy output tracking excitation control for power system generators. J. Franklin Inst. 350, 2334–2353 (2013)

    Article  MathSciNet  Google Scholar 

  45. Yang, Y., Zhou, C., Jia, X.: Robust adaptive fuzzy control and its application to ship roll stabilization. Inf. Sci. 142, 177–194 (2002)

    Article  MATH  Google Scholar 

  46. Qi, R., Tao, G., Tan, C., Yao, X.: Adaptive control of discrete-time state-space TS fuzzy systems with general relative degree. Fuzzy Sets Syst. 217, 22–40 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerasimos G. Rigatos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigatos, G.G. A differential flatness theory approach to observer-based adaptive fuzzy control of MIMO nonlinear dynamical systems. Nonlinear Dyn 76, 1335–1354 (2014). https://doi.org/10.1007/s11071-013-1213-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1213-0

Keywords

Navigation