Skip to main content
Log in

Stochastic averaging of quasi-integrable and non-resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A stochastic averaging method for predicting the response of quasi-integrable and non-resonant Hamiltonian systems to combined Gaussian and Poisson white noise excitations is proposed. First, the motion equations of a quasi-integrable and non-resonant Hamiltonian system subject to combined Gaussian and Poisson white noise excitations is transformed into stochastic integro-differential equations (SIDEs). Then \(n\)-dimensional averaged SIDEs and generalized Fokker–Plank–Kolmogrov (GFPK) equations for the transition probability densities of \(n\) action variables and \(n\)- independent integrals of motion are derived by using stochastic jump–diffusion chain rule and stochastic averaging principle. The probability density of the stationary response is obtained by solving the averaged GFPK equation using the perturbation method. Finally, as an example, two coupled non-linear damping oscillators under both external and parametric excitations of combined Gaussian and Poisson white noises are worked out in detail to illustrate the application and validity of the proposed stochastic averaging method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Roberts, J.B., Spanos, P.D.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Non-linear Mech. 21(2), 111–134 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Zhu, W.Q.: Stochastic averaging methods in random vibration. ASME Appl. Mech. Rev. 41(5), 189–199 (1988)

    Article  Google Scholar 

  3. Zhu, W.Q.: Recent developments and applications of the stochastic averaging method in random vibration. ASME Appl. Mech. Rev. 49(10S), S72–S80 (1996)

    Article  Google Scholar 

  4. Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 1. Gordon and Breach, New York (1963)

    Google Scholar 

  5. Khasminskii, R.Z.: A limit theorem for the solutions of differential equations with random right-hand sides. Theory Probab. Appl. 11(3), 390–406 (1966)

    Article  Google Scholar 

  6. Landa, P., Stratonovich, R.L.: Theory of stochastic transitions of various systems between different states. In: Proceedings of Moscow University, Moscow, pp. 33–45 (in Russian) (1962).

  7. Khasminskii, R.Z.: On the behavior of a conservative system with friction and small random noise. Appl. Math. Mech. 28, 1126–1130 (1964)

    Article  MathSciNet  Google Scholar 

  8. Zhu, W.Q.: Stochastic averaging of the energy envelope of nearly Lyapunov systems. In: Random vibrations and reliability. Proceedings of IUTAM Symposium, pp. 347–357. Akademie, Verlag (1983)

  9. Zhu, W.Q., Lin, Y.K.: Stochastic averaging of energy envelope. ASCE J. Eng. Mech. 117(8), 1890–1905 (1991)

    Article  Google Scholar 

  10. Khasminskii, R.Z.: On the averaging principle for stochastic differential Itô equation. Kibernetika 4, 260–279 (1968). (in Russian)

    Google Scholar 

  11. Roberts, J.B.: The energy envolope of a randomly excited non-linear oscillator. J. Sound Vib. 60(2), 177–185 (1978)

    Article  MATH  Google Scholar 

  12. Zhu, W.Q., Huang, Z.L., Suzuki, Y.: Response and stability of strongly non-linear oscillators under wide-band random excitation. In. J. Non-linear Mech. 36(8), 1235–1250 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Roberts, J.B., Vasta, M.: Response of non-linear oscillators to non-white random excitation using an energy based method. In: IUTAM Symposium on nonlinearity and stochastic structural, dynamics, pp. 221–231. Springer, Berlin (2001)

  14. Cai, G.Q., Lin, Y.K.: Random vibration of strongly nonlinear systems. Nonlinear Dyn. 24(1), 3–15 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhu, W.Q.: Nonlinear stochastic dynamics and control in Hamiltonian formulation. ASME Appl. Mech. Rev. 59, 230 (2006)

    Article  Google Scholar 

  16. Zhu, W.Q., Huang, Z.L., Yang, Y.Q.: Stochastic averaging of quasi-integrable Hamiltonian systems. ASME J. Appl. Mech. 64(4), 975–984 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhu, W.Q., Huang, Z.L., Suzuki, Y.: Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems. Int. J. Non-linear Mech. 37(3), 419–437 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhu, W.Q., Yang, Y.Q.: Stochastic averaging of quasi-nonintegrable-Hamiltonian systems. ASME J. Appl. Mech. 64(1), 157–164 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Huang, Z.L., Zhu, W.Q., Suzuki, Y.: Stochastic averaging of strongly non-linear oscillators under combined harmonic and white-noise excitations. J. Sound Vib. 238(2), 233–256 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huang, Z.L., Zhu, W.Q., Ni, Y.Q., Ko, J.M.: Stochastic averaging of strongly non-linear oscillators under bounded noise excitation. J. Sound Vib. 254(2), 245–267 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zeng, Y., Zhu, W.Q.: Stochastic averaging of n-dimensional non-linear dynamical systems subject to non-Gaussian wide-band random excitations. Int. J. Non-linear Mech. 45(5), 572–586 (2010)

    Article  Google Scholar 

  22. Zeng, Y., Zhu, W.Q.: Stochastic averaging of quasi-linear systems driven by Poisson white noise. Probab. Eng. Mech. 25(1), 99–107 (2010)

    Article  Google Scholar 

  23. Zeng, Y., Zhu, W.Q.: Stochastic averaging of quasi-nonintegrable-Hamiltonian systems under Poisson white noise excitation. ASME J. Appl. Mech. 78(2), 021002 (2011). doi:10.1115/1.4002528

    Article  MathSciNet  Google Scholar 

  24. Zeng, Y., Zhu, W.Q.: Stochastic averaging of strongly nonlinear oscillators under Poisson white noise excitation. In: IUTAM symposium on nonlinear stochastic, dynamics and control, pp. 147–155. Springer, Berlin (2011)

  25. Wojtkiewicz, S.F., Johnson, E.A., Bergman, L.A., Grigoriu, M., Spencer, B.F.: Response of stochastic dynamical systems driven by additive Gaussian and Poisson white noise: solution of a forward generalized Kolmogorov equation by a spectral finite difference method. Comput. Methods Appl. Mech. Eng. 168(1), 73–89 (1999)

    Article  MATH  Google Scholar 

  26. Zhu, H., Er, G., Iu, V., Kou, K.: Probabilistic solution of nonlinear oscillators excited by combined Gaussian and Poisson white noises. J. Sound Vib. 330(12), 2900–2909 (2011)

    Article  Google Scholar 

  27. Hanson, F.B.: Applied Stochastic Processes and Control for Jump–Diffusions: Modeling, Analysis, and Computation. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  28. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer-Verlag, Berlin (2005)

    Google Scholar 

  29. Jia, W.T., Zhu, W.Q., Xu, Y.: Stochastic averaging of quasi-non-integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations. Int. J. Non-linear Mech. 51, 45–53 (2013). doi:10.1016/j.ijnonlinmec.2012.12.003

    Article  Google Scholar 

  30. Liu, W.Y., Zhu, W.Q., Xu, W.: Stochastic stability of quasi non-integrable Hamiltonian systems under parametric excitations of Gaussian and Poisson white noises. Probab. Eng. Mech. 32, 39–47 (2013)

    Article  Google Scholar 

  31. Lin, Y.K.: Probabilistic Theory of Structural Dynamics. McGraw-Hill, New York (1967)

    Google Scholar 

  32. Di Paola, M., Vasta, M.: Stochastic integro-differential and differential equations of non-linear systems excited by parametric Poisson pulses. Int. J. Non-linear Mech. 32(5), 855–862 (1997)

    Article  MATH  Google Scholar 

  33. Di Paola, M., Falsone, G.: Itô and Stratonovich integrals for delta-correlated processes. Probab. Eng. Mech. 8(3), 197–208 (1993)

    Article  Google Scholar 

  34. Dipaola, M., Falsone, G.: Stochastic dynamics of nonlinear-systems driven by non-normal delta-correlated processes. J. Appl. Mech. 60(1), 141–148 (1993). doi:10.1115/1.2900736

    Article  MathSciNet  Google Scholar 

  35. Xu, Y., Duan, J., Xu, W.: An averaging principle for stochastic dynamical systems with Lévy noise. Physica D 240(17), 1395–1401 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Cai, G.Q., Lin, Y.K.: Response distribution of non-linear systems excited by non-Gaussian impulsive noise. Int. J. Non-linear Mech. 27(6), 955–967 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wu, Y., Zhu, W.Q.: Stationary response of MDOF dissipated Hamiltonian systems to Poisson white noises. J. Appl. Mech. 75(4), 044502 (2008). doi:10.1115/1.2912987

    Article  Google Scholar 

  38. Wu, Y., Zhu, W.Q.: Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises. Phys. Lett. A 372(5), 623–630 (2008)

    Google Scholar 

  39. Lin, Y.K., Cai, G.Q.: Probabilistic Structural Dynamics: Advanced Theory and Applications. McGraw-Hill, New York (1995)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China under Grants Nos. 10932009, 11072212, 11272279 and the Basic Research Fund of Northwestern Polytechnic University under Grant No. 201242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqiu Zhu.

Appendices

Appendix 1

The Taylor expansions of \(I_r ({\mathbf {Q}},{\mathbf {P}}+{\hat{\gamma }}_l )-I_r ({\mathbf {Q}},{\mathbf {P}})\) \(\Theta _r ({\mathbf {Q}},{\mathbf {P}}+{\hat{\gamma }}_l )-\Theta _r ({\mathbf {Q}},{\mathbf {P}})\), and \(H_r ({\mathbf {Q}},{\mathbf {P}}+{\hat{\gamma }}_l )-H_r ({\mathbf {Q}},{\mathbf {P}})\) (\(r\) = 1, 2, \(\ldots \), \(n\); \(l\) = 1, 2, \(\ldots \), \(n_{p})\) are

$$\begin{aligned}&I_r ( {{\mathbf {Q,P+}}\widehat{\gamma }_l })-I_r ( {{\mathbf {Q,P}}}) \nonumber \\&=\sum \limits _{s=1}^\infty {\frac{1}{s!}} \sum \limits _{i_1 =1}^n {\cdots \sum \limits _{i_s =1}^n {\frac{\partial ^sI_r }{\partial P_{i_1 } \cdots \partial P_{i_s } }} } \nonumber \\&\qquad \times \sum \limits _{j_1 =1}^\infty {\frac{\varepsilon ^{j_1 }}{j_1 !}} f_{i_1 l}^{( {j_1 })} Y_l^{j_1 } \cdots \sum \limits _{j_r =1}^\infty {\frac{\varepsilon ^{j_s }}{j_r !}} f_{i_s l}^{( {j_s })} Y_l^{j_s } \nonumber \\&=\sum \limits _{s=1}^\infty {\frac{1}{s!}} \sum \limits _{i_1 =1}^n {\cdots \sum \limits _{i_s =1}^n {\frac{\partial ^sI_r }{\partial P_{i_1 } \cdots \partial P_{i_s } }} } \sum \limits _{j_1 =1}^\infty \cdots \nonumber \\&\quad \times {\sum \limits _{j_s =1}^\infty {\frac{\varepsilon ^{j_1 +\cdots +j_r }}{j_1 !\cdots j_s !}} } f_{i_1 l}^{( {j_1 })} \cdots f_{i_s l}^{( {j_s })} Y_l^{j_1 +\cdots +j_s } \nonumber \\&=\sum \limits _{k=1}^\infty {\varepsilon ^kY_l^k A_{r;k;l} ( {Q_1 ,\cdots ,Q_n ,P_1 ,\cdots ,P_n })} \nonumber \\&=\sum \limits _{k=1}^\infty {\varepsilon ^kY_l^k A_{r;k;l} ( {{\mathbf {Q}},{\mathbf {P}}})} \end{aligned}$$
(88)
$$\begin{aligned}&\Theta _r ( {{\mathbf {Q,P+}}\hat{\gamma }_l })-\Theta _r ( {\mathbf {Q,P}}) \nonumber \\&=\sum \limits _{s=1}^\infty {\frac{1}{s!}} \sum \limits _{i_1 =1}^n {\cdots \sum \limits _{i_s =1}^n {\frac{\partial ^s\Theta _r }{\partial P_{i_1 } \cdots \partial P_{i_s } }} }\nonumber \\&\quad \times \sum \limits _{j_1 =1}^\infty {\frac{\varepsilon ^{j_1 }}{j_1 !}} f_{i_1 l}^{( {j_1 })} Y_l^{j_1 } \cdots \sum \limits _{j_r =1}^\infty {\frac{\varepsilon ^{j_s }}{j_r !}} f_{i_s l}^{( {j_s })} Y_l^{j_s } \nonumber \\&=\sum \limits _{s=1}^\infty {\frac{1}{s!}} \sum \limits _{i_1 =1}^n {\cdots \sum \limits _{i_s =1}^n {\frac{\partial ^s\Theta _r }{\partial P_{i_1 } \cdots \partial P_{i_s } }} } \sum \limits _{j_1 =1}^\infty \cdots \nonumber \\&\quad \times { \sum \limits _{j_s =1}^\infty {\frac{\varepsilon ^{j_1 +\cdots +j_r }}{j_1 !\cdots j_s !}} } f_{i_1 l}^{( {j_1 })} \cdots f_{i_s l}^{( {j_s })} Y_l^{j_1 +\cdots +j_s } \nonumber \\&=\sum \limits _{k=1}^\infty {\varepsilon ^kY_l^k B_{r;k;l} ( {{\mathbf {Q}},{\mathbf {P}}})} \end{aligned}$$
(89)

and

$$\begin{aligned}&H_r ( {{\mathbf {Q,P+}}\hat{\gamma }_l })-H_r ( {\mathbf {Q,P}}) \nonumber \\&=\sum \limits _{s=1}^\infty {\frac{1}{s!}} \sum \limits _{i_1 =1}^n {\cdots \sum \limits _{i_s =1}^n {\frac{\partial ^sH_r }{\partial P_{i_1 } \cdots \partial P_{i_s } }} }\nonumber \\&\quad \times \sum \limits _{j_1 =1}^\infty {\frac{\varepsilon ^{j_1 }}{j_1 !}} f_{i_1 l}^{( {j_1 })} Y_l^{j_1 } \cdots \sum \limits _{j_r =1}^\infty {\frac{\varepsilon ^{j_s }}{j_r !}} f_{i_s l}^{( {j_s })} Y_l^{j_s } \nonumber \\&=\sum \limits _{s=1}^\infty {\frac{1}{s!}} \sum \limits _{i_1 =1}^n {\cdots \sum \limits _{i_s =1}^n {\frac{\partial ^sH_r }{\partial P_{i_1 } \cdots \partial P_{i_s } }} } \sum \limits _{j_1 =1}^\infty \cdots \nonumber \\&\quad \times { \sum \limits _{j_s =1}^\infty {\frac{\varepsilon ^{j_1 +\cdots +j_r }}{j_1 !\cdots j_s !}} } f_{i_1 l}^{( {j_1 })} \cdots f_{i_s l}^{( {j_s })} Y_l^{j_1 +\cdots +j_s } \nonumber \\&=\sum \limits _{k=1}^\infty {\varepsilon ^kY_l^k C_{r;k;l} ( {{\mathbf {Q}},{\mathbf {P}}})} \end{aligned}$$
(90)

Appendix 2

Following the jump–diffusion rule in Ref. [27], the SIDE of action variables \(I_{\eta }\) is

$$\begin{aligned} \mathrm{d}I_r&= \left[ \frac{\partial I_r }{\partial t}+\sum \limits _{i=1}^n \frac{\partial I_r }{\partial Q_i }\frac{\partial H}{\partial P_i }-\sum \limits _{i=1}^n \frac{\partial I_r }{\partial P_i }\right. \nonumber \\&\left. \times \left( {\frac{\partial H}{\partial Q_i }+\varepsilon ^2\sum \limits _{j=1}^n {m_{ij} \frac{\partial H}{\partial P_j }} }\right) \right. \nonumber \\&\left. +\frac{\varepsilon ^2}{2}\sum \limits _{j=1}^n {\sum \limits _{k=1}^n {\sum \limits _{l=1}^{n_g } {\sigma _{jl} \sigma _{kl} \frac{\partial ^2I_r }{\partial P_j \partial P_k }} } } \right] \mathrm{d}t \nonumber \\&+\varepsilon \sum \limits _{i=1}^n {\sum \limits _{j=1}^{n_g } {\frac{\partial I_r }{\partial P_i }\sigma _{ij} \mathrm{d}B_j (t)} } \nonumber \\&+\sum \limits _{l=1}^{n_p } {\int _{\mathcal{Q}_l } {\left[ {I_r ({\mathbf {Q}},{\mathbf {P}}\!+\!{\hat{\gamma }}_l )\!-\!I_r ({\mathbf {Q}},{\mathbf {P}})} \right] {\mathcal {P}}_l (\mathrm{d}t,\mathrm{d}Y_l ).} }\nonumber \\ \end{aligned}$$
(91)

Consider the first part (drift part) of \(\mathrm{d}I_{r}\) equation (91):

$$\begin{aligned}&\frac{\partial I_r }{\partial t}+\sum \limits _{i=1}^n {\frac{\partial I_r }{\partial Q_i }\frac{\partial H}{\partial P_i }}\nonumber \\&\qquad -\sum \limits _{i=1}^n {\frac{\partial I_r }{\partial P_i }\left( {\frac{\partial H}{\partial Q_i }+\varepsilon ^2\sum \limits _{j=1}^n {m_{ij} \frac{\partial H}{\partial P_j }} }\right) } \nonumber \\&\qquad +\frac{\varepsilon ^2}{2}\sum \limits _{j=1}^n {\sum \limits _{k=1}^n {\sum \limits _{l=1}^{n_g } {\sigma _{jl} \sigma _{il} \frac{\partial ^2I_r }{\partial P_j \partial P_k }} } } \nonumber \\&\quad =\frac{\partial I_r }{\partial t}+\sum \limits _{i=1}^n \left( \frac{\partial I_r }{\partial Q_i }\frac{\partial H}{\partial P_i }-\frac{\partial I_r }{\partial P_i }\frac{\partial H}{\partial Q_i }\right) \nonumber \\&\qquad -\sum \limits _{i=1}^n {\frac{\partial I_r }{\partial P_i }\varepsilon ^2\sum \limits _{j=1}^n {m_{ij} \frac{\partial H}{\partial P_j }} }\nonumber \\&\qquad +\frac{\varepsilon ^2}{2}\sum \limits _{j=1}^n {\sum \limits _{k=1}^n {\sum \limits _{l=1}^{n_g } {\sigma _{jl} \sigma _{il} \frac{\partial ^2I_r }{\partial P_j \partial P_k }} } } , \end{aligned}$$
(92)

According to Eq. (6), in Eq. (92), we have

$$\begin{aligned} \frac{\partial I_r }{\partial t}=0, \end{aligned}$$
(93)

because \(I_{\eta }\) and \(H\) are all integrals of motion of the Hamiltonian system, the vanishing Poisson brackets (2) can be used here. The following equation can be obained:

$$\begin{aligned} \sum \limits _{i=1}^n {\left( {\frac{\partial I_r }{\partial Q_i }\frac{\partial H}{\partial P_i }-\frac{\partial I_r }{\partial P_i }\frac{\partial H}{\partial Q_i }}\right) } =0. \end{aligned}$$
(94)

Substituting Eqs. (93) and (94) in Eq. (92) leads to the last line of Eq. (92) as

$$\begin{aligned} -\varepsilon ^2\sum \limits _{i=1}^n {\sum \limits _{j=1}^n {m_{ij} \frac{\partial I_r }{\partial P_i }\frac{\partial H}{\partial P_j }} } +\frac{\varepsilon ^2}{2}\sum \limits _{j=1}^n {\sum \limits _{k=1}^n {\sum \limits _{l=1}^{n_g } {\sigma _{jl} \sigma _{kl} \frac{\partial ^2I_r }{\partial P_j \partial P_k }} } } .\nonumber \\ \end{aligned}$$
(95)

Replacing the drift part of Eq. (91) by Eq. (95), Eq. (90) can be rewritten as

$$\begin{aligned} \mathrm{d}I_r&= \left[ -\varepsilon ^2\sum \limits _{i=1}^n {\sum \limits _{j=1}^n {m_{ij} \frac{\partial I_r }{\partial P_i }\frac{\partial H}{\partial P_j }} }\right. \nonumber \\&\left. +\frac{\varepsilon ^2}{2}\sum \limits _{j=1}^n {\sum \limits _{k=1}^n {\sum \limits _{l=1}^{n_g } {\sigma _{jl} \sigma _{kl} \frac{\partial ^2I_r }{\partial P_j \partial P_k }} } } \right] dt \nonumber \\&+\varepsilon \sum \limits _{i=1}^n {\sum \limits _{j=1}^{n_g } {\frac{\partial I_r }{\partial P_i }\sigma _{ij} \mathrm{d}B_j (t)} }\nonumber \\&+\!\sum \limits _{l=1}^{n_p } {\int _{\mathcal{Q}_l } {\left[ {I_r ({\mathbf {Q}},{\mathbf {P}}\!+\!{\hat{\gamma }}_l )\!-\!I_r ({\mathbf {Q}},{\mathbf {P}})} \right] _l (\mathrm{d}t,\mathrm{d}Y_l ).} }\nonumber \\ \end{aligned}$$
(96)

Finally, the SIDEs for \(I_{r}\) in Eq. (27) can be derived. Similar derivation of that for (96), the SIDEs for \(\Theta _{r}\) in Eq. (27) and Eq. (47) can be derived.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, W., Zhu, W. Stochastic averaging of quasi-integrable and non-resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations. Nonlinear Dyn 76, 1271–1289 (2014). https://doi.org/10.1007/s11071-013-1209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1209-9

Keywords

Navigation