Skip to main content
Log in

Wavelet leaders-based multifractal spectrum distribution

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We introduce a new time-singularity multifractal spectrum distribution (TS-MFSD) approach based on wavelet leaders (WL) and study its properties. Compared against the previous TS-MFSD based on the wavelet coefficient and the wavelet transform module maxima method, we show first that WL-based formalism can obtain the time-singularity multifractal distribution over its entire time-singularity plane, second that it holds when applied to process embodying chirp-type or oscillating singularities (as opposed to cusp-type ones), and third that it has less computational cost benefitting from the fast decomposition algorithms and can be used for signals of arbitrary length. We illustrate these results on the multifractal stochastic processes and real sea clutter data, which show that WL-based MFSD has excellent theoretical and practical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mandelbrot, B.B.: The Fractal Geometry of Nature [M], pp. 5–47. W. H. Freeman, San Francisco (1982)

    Google Scholar 

  2. Muzy, J.F., Bacry, E., Arneodo, A.: Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67, 3515–3518 (1991)

    Article  Google Scholar 

  3. Telesca, L., Colangelo, G., Lapenna, V.: Multifractal variability in geo-electrical signals and correlations with seismicity: a study case in southern Italy. Nat. Hazards Earth Syst. Sci. 5, 673–677 (2005)

    Article  Google Scholar 

  4. Arneodo, A., Audit, B., Decoster, N., Muzy, J-F., Vaillant, C.: Wavelet based multifractal formalism: applications to DNA sequences, satellite images of the cloud structure and stock market data. In: The Science of Disasters (Part I), pp. 26–102. Springer, New York (2002)

  5. Shi, W., Shang, P.: Cross-sample entropy statistic as a measure of synchronism and cross-correlation of stock markets. Nonlinear Dyn. 1(71), 539–554 (2013)

    Article  MathSciNet  Google Scholar 

  6. Lu, J., Ye, Z., Zou, Y.: Huber fractal image coding based on a fitting plane. IEEE Trans. Image Process. 22(1), 134–145 (2013)

    Article  MathSciNet  Google Scholar 

  7. Lu, J., Ye, Z., Zou, Y., Ye, R.: An enhanced fractal image denoising algorithm. Chaos Soliton. Fract. 38, 1054–1064 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Riedi, R.H.: Multifractals and wavelets: a potential tool in Geophysics. In: SEG meeting, technical session on novel transforms, New Orleans, LA, September (1998)

  9. Chhabra, A., Jensen, R.: Direct determination of the (\(f\alpha \)) spectrum. Phys. Rev. Lett. 62(12), 1327–1330 (1989)

    Article  MathSciNet  Google Scholar 

  10. Bacry, E., Arneodo, A., Muzy, J.F.: Singularity spectrum of fractal signals from wavelet analysis: exact results. J. Stat. Phys. 70, 635–674 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Arneodo, A., Argoul, A., Muzy, J.F., Tabard, M., Bacry, E.: Beyond classical multifractal analysis using wavelets: uncovering a multiplicative process hidden in the geometrical complexity of diffusion limited aggregates. Fractals 1, 629–646 (1995)

    Article  MathSciNet  Google Scholar 

  12. Gu, G., Zhou, W.: Detrending moving average algorithm for multifractals. Phys. Rev. E 82(1), 011136 (2010)

    Article  MathSciNet  Google Scholar 

  13. Lashermes, B., Jaffard, S., Abry, P.: Wavelet leaders in multifractal analysis. In: Proceedings of IEEE international conference on acoustics, speech, and signal, vol. 4, pp. 161–164 (2005).

  14. Wang, Y., Zhu, Y.S.: A short-time multifractal approach for arrhythmia detection based on fuzzy neural network. IEEE Trans. Biomed. Eng. 48(9), 989–995 (2001)

    Article  Google Scholar 

  15. Xiong, G., Yang, X., Zhao, H.: The short-time multifractal formalism: definition and implement. In: ICIC 2008, Shanghai CCIS, vol. 15, pp. 541–548 (2008)

  16. Xiong, G., Zhang, S.: The time-singularity multifractal spectrum distribution. Phys. A 391, 4727–4739 (2012)

    Article  MathSciNet  Google Scholar 

  17. Arneodo, A., Bacry, E., Muzy, J.F.: Random cascades on wavelet dyadic trees. J. Math. Phys. 39, 4142 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Aubry, J-M, Jaffard, S.: Random wavelet series. Commun. Math. Phys. 227, 483–514 (2002)

    Google Scholar 

  19. Xiong, G., Yang, X., Zhao, H.: The non-stationary characteristic analysis and model of sea clutter of fuze. In: IEEE 2005 MAPE, Beijing, vol. 8, pp. 1236–1239 (2005)

  20. Chainais, P., Riedi, R., Abry, P.: On non scale invariant infinitely divisible cascades. IEEE Trans. Inf. Theory 51(3), 1063–1083 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Serrano, E., Figliola, A.: Wavelet Leaders: a new method to estimate the multifractal singularity spectra. Phys. A 388, 2793–2805 (2009)

    Article  MathSciNet  Google Scholar 

  22. Lashermes, B. Abry, P., Chainais, P.: Scaling exponents estimation for multiscaling processes. In: ICASSP 2004, Canada

Download references

Acknowledgments

The authors would be grateful to the anonymous reviewers for helpful comments and valuable suggestions that led to a significant improvement of the manuscript. This work was supported by the National Natural Science Foundation of China (NSFC, Grant Number 61171168, 61301216, & 60702016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Xiong or Shuning Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, G., Zhang, S., Zhao, H. et al. Wavelet leaders-based multifractal spectrum distribution. Nonlinear Dyn 76, 1225–1235 (2014). https://doi.org/10.1007/s11071-013-1206-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1206-z

Keywords

Navigation