Skip to main content
Log in

On the nonlinear stability of relative equilibria of the full spacecraft dynamics around an asteroid

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The full dynamics of a spacecraft around an asteroid, in which the gravitational orbit–attitude coupling is considered, has been shown to be of great value and interest. Nonlinear stability of the relative equilibria of the full dynamics of a rigid spacecraft around a uniformly rotating asteroid is studied with the method of geometric mechanics. The non-canonical Hamiltonian structure of the problem, i.e., Poisson tensor, Casimir functions and equations of motion, are given in the differential geometric method. A classical kind of relative equilibria of the spacecraft is determined from a global point of view, at which the mass center of the spacecraft is on a stationary orbit, and the attitude is constant with respect to the asteroid. The conditions of nonlinear stability of the relative equilibria are obtained with the energy-Casimir method through the semi-positive definiteness of the projected Hessian matrix of the variational Lagrangian. Finally, example asteroids with a wide range of parameters are considered, and the nonlinear stability criterion is calculated. However, it is found that the nonlinear stability condition cannot be satisfied by spacecraft with any mass distribution parameters. The nonlinear stability condition by us is only the sufficient condition, but not the necessary condition, for the nonlinear stability. It means that the energy-Casimir method cannot provide any information about nonlinear stability of the relative equilibria, and more powerful tools, which are the analogues of the Arnold’s theorem in the canonical Hamiltonian system with two degrees of freedom, are needed for a further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aboelnaga, M.Z., Barkin, Y.V.: Stationary motion of a rigid body in the attraction field of a sphere. Astronom. Zh. 56(3), 881–886 (1979)

    Google Scholar 

  2. Balsas, M.C., Jiménez, E.S., Vera, J.A.: The motion of a gyrostat in a central gravitational field: phase portraits of an integrable case. J. Nonlinear Math. Phys. 15(s3), 53–64 (2008)

    Article  MathSciNet  Google Scholar 

  3. Balsas, M.C., Jiménez, E.S., Vera, J.A., Vigueras, A.: Qualitative analysis of the phase flow of an integrable approximation of a generalized roto-translatory problem. Cent. Eur. J. Phys. 7(1), 67–78 (2009)

    Article  Google Scholar 

  4. Barkin, Y.V.: Poincaré periodic solutions of the third kind in the problem of the translational-rotational motion of a rigid body in the gravitational field of a sphere. Astronom. Zh. 56, 632–640 (1979)

    MathSciNet  MATH  Google Scholar 

  5. Barkin, Y.V.: Some peculiarities in the moon’s translational-rotational motion caused by the influence of the third and higher harmonics of its force function. Pis’ma Astron. Zh. 6(6), 377–380 (1980)

    Google Scholar 

  6. Barkin, Y.V.: ‘Oblique’ regular motions of a satellite and some small effects in the motions of the Moon and Phobos. Kosm. Issled. 15(1), 26–36 (1985)

    Google Scholar 

  7. Beck, J.A., Hall, C.D.: Relative equilibria of a rigid satellite in a circular Keplerian orbit. J. Astronaut. Sci. 40(3), 215–247 (1998)

    MathSciNet  Google Scholar 

  8. Beletskii, V.V., Ponomareva, O.N.: A parametric analysis of relative equilibrium stability in a gravitational field. Kosm. Issled. 28(5), 664–675 (1990)

    Google Scholar 

  9. Bellerose, J., Scheeres, D.J.: Energy and stability in the full two body problem. Celest. Mech. Dyn. Astron. 100, 63–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bellerose, J., Scheeres, D.J.: General dynamics in the restricted full three body problem. Acta Astronaut. 62, 563–576 (2008)

    Article  Google Scholar 

  11. Boué, G., Laskar, J.: Spin axis evolution of two interacting bodies. Icarus 201, 750–767 (2009)

    Article  Google Scholar 

  12. Cabral, H.E., Meyer, K.R.: Stability of equilibria and fixed points of conservative systems. Nonlinearity 12, 1351–1362 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elipe, A., Lanchares, V., López-Moratalla, T., Riaguas, A.: Nonlinear stability in resonant cases: a geometrical approach. J. Nonlinear Sci. 11, 211–222 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elipe, A., Lanchares, V., Pascual, A.I.: On the stability of equilibria in two-degrees-of- freedom Hamiltonian systems under resonances. J. Nonlinear Sci. 15, 305–319 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elipe, A., López-Moratalla, T.: On the Lyapunov stability of stationary points around a central body. J. Guid. Control Dyn. 29(6), 1376–1383 (2006)

    Article  Google Scholar 

  16. Goździewski, K., Maciejewski, A.J.: Unrestricted planar problem of a symmetric body and a point mass. Triangular libration points and their stability. Celest. Mech. Dyn. Astron. 75, 251–285 (1999)

    Article  MATH  Google Scholar 

  17. Hall, C.D.: Attitude dynamics of orbiting gyrostats. In: Prętka-Ziomek, H., Wnuk, E., Seidelmann, P.K., Richardson, D. (eds.) Dynamics of Natural and Artificial Celestial Bodies, pp. 177–186. Kluwer Academic Publishers, Dordrecht (2001)

  18. Hirabayashi, M., Morimoto, M.Y., Yano, H., Kawaguchi, J., Bellerose, J.: Linear stability of collinear equilibrium points around an asteroid as a two-connected-mass: application to fast rotating Asteroid 2000EB\(_{14}\). Icarus 206, 780–782 (2010)

    Article  Google Scholar 

  19. Hu, W.: Orbital Motion in Uniformly Rotating Second Degree and Order Gravity Fields, Ph.D. Dissertation. Department of Aerospace Engineering, The University of Michigan, Michigan (2002)

  20. Hu, W., Scheeres, D.J.: Numerical determination of stability regions for orbital motion in uniformly rotating second degree and order gravity fields. Planet. Space Sci. 52, 685–692 (2004)

    Article  Google Scholar 

  21. Kinoshita, H.: Stationary motions of an axisymmetric body around a spherical body and their stability. Publ. Astron. Soc. Jpn. 22, 383–403 (1970)

    Google Scholar 

  22. Kinoshita, H.: Stationary motions of a triaxial body and their stability. Publ. Astron. Soc. Jpn. 24, 409–417 (1972)

    MathSciNet  Google Scholar 

  23. Kinoshita, H.: First-order perturbations of the two finite body problem. Publ. Astron. Soc. Jpn. 24, 423–457 (1972)

    MathSciNet  Google Scholar 

  24. Koon, W.-S., Marsden, J.E., Ross, S.D., Lo, M., Scheeres, D.J.: Geometric mechanics and the dynamics of asteroid pairs. Ann. N. Y. Acad. Sci. 1017, 11–38 (2004)

    Article  Google Scholar 

  25. Kumar, K.D.: Attitude dynamics and control of satellites orbiting rotating asteroids. Acta Mech. 198, 99–118 (2008)

    Article  MATH  Google Scholar 

  26. Maciejewski, A.J.: Reduction, relative equilibria and potential in the two rigid bodies problem. Celest. Mech. Dyn. Astron. 63, 1–28 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Markeev, A.P.: On the stability of the triangular libration points in the circular bounded three-body problem. Prikh. Mat. Mech. 33, 112–116 (1969)

    MathSciNet  MATH  Google Scholar 

  28. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, TAM Series 17. Springer, New York (1999)

    Book  Google Scholar 

  29. McMahon, J.W., Scheeres, D.J.: Dynamic limits on planar libration–orbit coupling around an oblate primary. Celest. Mech. Dyn. Astron. 115, 365–396 (2013)

    Google Scholar 

  30. Misra, A.K., Panchenko, Y.: Attitude dynamics of satellites orbiting an asteroid. J. Astronaut. Sci. 54(3 &4), 369–381 (2006)

    Article  MathSciNet  Google Scholar 

  31. Riverin, J.L., Misra, A.K.: Attitude dynamics of satellites orbiting small bodies. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA 2002–4520, Monterey, CA, 5–8 Aug (2002)

  32. San-Juan, J.F., Abad, A., Scheeres, D.J., Lara, M.: A first order analytical solution for spacecraft motion about (433) Eros. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA 2002–4543, Monterey, CA, 5–8 Aug (2002)

  33. Scheeres, D.J.: Dynamics about uniformly rotating triaxial ellipsoids: applications to asteroids. Icarus 110, 225–238 (1994)

    Article  Google Scholar 

  34. Scheeres, D.J.: Stability in the full two-body problem. Celest. Mech. Dyn. Astron. 83, 155–169 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Scheeres, D.J.: Stability of relative equilibria in the full two-body problem. Ann. N. Y. Acad. Sci. 1017, 81–94 (2004)

    Article  Google Scholar 

  36. Scheeres, D.J.: Relative equilibria for general gravity fields in the sphere-restricted full 2-body problem. Celest. Mech. Dyn. Astron. 94, 317–349 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Scheeres, D.J.: Spacecraft at small NEO. arXiv: physics/0608158v1 (2006)

  38. Scheeres, D.J.: Stability of the planar full 2-body problem. Celest. Mech. Dyn. Astron. 104, 103–128 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Scheeres, D.J.: Orbit mechanics about asteroids and comets. J. Guid. Control Dyn. 35(3), 987–997 (2012)

    Article  MathSciNet  Google Scholar 

  40. Scheeres, D.J., Hu, W.: Secular motion in a 2nd degree and order-gravity field with no rotation. Celest. Mech. Dyn. Astron. 79, 183–200 (2001)

    Article  MATH  Google Scholar 

  41. Scheeres, D.J., Ostro, S.J., Hudson, R.S., Werner, R.A.: Orbits close to asteroid 4769 Castalia. Icarus 121, 67–87 (1996)

    Article  Google Scholar 

  42. Scheeres, D.J., Ostro, S.J., Hudson, R.S., DeJong, E.M., Suzuki, S.: Dynamics of orbits close to asteroid 4179 Toutatis. Icarus 132, 53–79 (1998)

    Article  Google Scholar 

  43. Scheeres, D.J., Williams, B.G., Miller, J.K.: Evaluation of the dynamic environment of an asteroid: applications to 433 Eros. J. Guid. Control Dyn. 23(3), 466–475 (2000)

    Article  Google Scholar 

  44. Stokes, G.H., Yeomans, D.K.: Study to determine the feasibility of extending the search for near-earth objects to smaller limiting diameters. NASA report, Aug (2003)

  45. Vereshchagin, M., Maciejewski, A.J., Goździewski, K.: Relative equilibria in the unrestricted problem of a sphere and symmetric rigid body. Mon. Not. R. Astron. Soc. 403, 848–858 (2010)

    Article  Google Scholar 

  46. Wang, Y., Xu, S.: Analysis of gravity-gradient-perturbed attitude dynamics on a stationary orbit around an asteroid via dynamical systems theory. AIAA/AAS Astrodynamics Specialist Conference, AIAA 2012–5059, Minneapolis, MN, 13–16 Aug (2012)

  47. Wang, Y., Xu, S.: Hamiltonian structures of dynamics of a gyrostat in a gravitational field. Nonlinear Dyn. 70(1), 231–247 (2012)

    Article  MATH  Google Scholar 

  48. Wang, Y., Xu, S.: Gravitational orbit-rotation coupling of a rigid satellite around a spheroid planet. J. Aerosp. Eng. 27(1), 140–150 (2014).

    Google Scholar 

  49. Wang, Y., Xu, S.: Symmetry, reduction and relative equilibria of a rigid body in the \(J_{2}\) problem. Adv. Space Res. 51(7), 1096–1109 (2013)

    Article  Google Scholar 

  50. Wang, Y., Xu, S.: Stability of the classical type of relative equilibria of a rigid body in the J2 problem. Astrophys. Space Sci. 346(2), 443–461 (2013)

    Article  MATH  Google Scholar 

  51. Wang, Y., Xu, S.: Linear stability of the relative equilibria of a spacecraft around an asteroid. 64th International Astronautical Congress, IAC-13-C1.9.5, Beijing (2013). Accessed 23–27 Sept (2013)

  52. Wang, Y., Xu, S.: Gravity gradient torque of spacecraft orbiting asteroids. Aircr. Eng. Aerosp. Technol. 85(1), 72–81 (2013)

    Article  Google Scholar 

  53. Wang, Y., Xu, S.: Equilibrium attitude and stability of a spacecraft on a stationary orbit around an asteroid. Acta Astronaut. 84, 99–108 (2013)

    Article  Google Scholar 

  54. Wang, Y., Xu, S.: Attitude stability of a spacecraft on a stationary orbit around an asteroid subjected to gravity gradient torque. Celest. Mech. Dyn. Astron. 115(4), 333–352 (2013)

    Article  Google Scholar 

  55. Wang, Y., Xu, S.: Equilibrium attitude and nonlinear stability of a spacecraft on a stationary orbit around an asteroid. Adv. Space Res. 52(8), 1497–1510 (2013)

    Article  Google Scholar 

  56. Wang, L.-S., Krishnaprasad, P.S., Maddocks, J.H.: Hamiltonian dynamics of a rigid body in a central gravitational field. Celest. Mech. Dyn. Astron. 50, 349–386 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang, Y., Xu, S., Tang, L.: On the existence of the relative equilibria of a rigid body in the J2 problem. Astrophys. Space Sci. (2013). doi:10.1007/s10509-013-1542-y

  58. Wang, Y., Xu, S., Zhu, M.: Stability of relative equilibria of the full spacecraft dynamics around an asteroid with orbit–attitude coupling. Adv. Space Res. (2014). doi:10.1016/j.asr.2013.12.040

  59. Woo, P., Misra, A.K., Keshmiri, M.: On the planar motion in the full two-body problem with inertial symmetry. Celest. Mech. Dyn. Astron. 117(3), 263–277 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study was supported by the Innovation Foundation of BUAA for PhD Graduates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Appendix: Formulations of coefficients in characteristic equation

Appendix: Formulations of coefficients in characteristic equation

The explicit formulations of the coefficients in Eq. (43) are given as follows:

$$\begin{aligned}&A_{1} = 36\,\tau _{2} \,m^{2} \mu - 6\,\tau _{0} \,m^{2} \mu + 2\,R_{e}^{2} m^{2} \mu \nonumber \\&\quad +\,6\,m\mu \,I_{{yy}} - 12\,I_{{xx}} \,m\mu + 6\,m\mu I_{{zz}} - R_{e}^{5}.\end{aligned}$$
(48)
$$\begin{aligned}&A_{0} = 6\,\mu \,m\tau _{0} - 2\,R_{e}^{2} m\mu - 36\,\mu \,m\tau _{2} - \omega _{T}^{2} R_{e}^{5} m \nonumber \\&\quad -\,6\,\mu \,I_{{yy}} + 12\,I_{{xx}} \,\mu - 6\,\mu \,I_{{zz}}.\end{aligned}$$
(49)
$$\begin{aligned}&B_{2} = - 9mR_{e}^{3} \mu \,I_{{yy}} + 3\,m^{2} R_{e}^{3} \mu \,\tau _{0} - 3\,mR_{e}^{3} \mu \,I_{{zz}} \nonumber \\&\quad -\, 42\,m^{2} R_{e}^{3} \mu \,\tau _{2} - 2\,m^{2} R_{e}^{5} \mu - 12\,m^{2} R_{e}^{5} \mu \,\tau _{2} \nonumber \\&\quad +\, 12\,mR_{e}^{3} I_{{xx}} \,\mu - 2\,R_{e} ^{8}. \end{aligned}$$
(50)
$$\begin{aligned}&B_{1} = - 72\,m^{2} \mu ^{2} \tau _{2} \,I_{{xx}} + 2\,\mu \,mR_{e}^{5} - 18\,m^{3} \mu ^{2} \tau _{2} \,\tau _{0}\nonumber \\&\quad -\, 3\,mR_{e}^{3} \mu \,\tau _{0} + 12\,\mu \,mR_{e}^{5} \tau _{2} + 12\,m^{3} \mu ^{2} \tau _{2} \,R_{e}^{2} \nonumber \\&\quad +\, 9\,R_{e}^{3} \mu \,I_{{yy}} + 54\,m^{2} \mu ^{2} \tau _{2} \,I_{{yy}} - 12\,R_{e}^{3} I_{{xx}} \,\mu \nonumber \\&\quad +\, 3\,R_{e}^{3} \mu \,I_{{zz}} + 18\,m^{2} \mu ^{2} \tau _{2} \,I_{{zz}} + 108\,m^{3} \mu ^{2} \tau _{2}^{2} \nonumber \\&\quad -\, 2\,m\omega _{T}^{2}R_{e}^{8} + 42\,mR_{e}^{3} \mu \,\tau _{2}. \end{aligned}$$
(51)
$$\begin{aligned}&B_{0} = - 18\,m\mu ^{2} \tau _{2} \,I_{{zz}} + 72\,mI_{{xx}} \,\mu ^{2} \tau _{2} - 12\,m^{2} R_{e}^{2} \mu ^{2} \tau _{2} \nonumber \\&\quad +\, 12\,m^{2} R_{e}^{5} \omega _{T}^{2} \tau _{2} \,\mu + 18\,m^{2} \mu ^{2} \tau _{2} \,\tau _{0} \nonumber \\&\quad -\, 108\,m^{2} \mu ^{2} \tau _{2}^{2} - 54\,m\mu ^{2} \tau _{2} \,I_{{yy}}. \end{aligned}$$
(52)
$$\begin{aligned}&C_2 =-2\,R_e^8 \omega _T^2 I_{xx} \,I_{zz} -4\,mR_e^5 I_{xx} \,\mu -4\,R_e^8\nonumber \\&\quad +\,24\,R_e^3 I_{xx}^2 \mu -6\,R_e^3 I_{xx} \,\mu \,I_{yy} -18\,R_e^3 I_{xx} \,\mu \,I_{zz} \nonumber \\&\quad -\,60\,mR_e^3 I_{xx} \,\mu \,\tau _2 -2\,m\omega _T^2 I_{xx} \,R_e^{10} +6\,mR_e^5 I_{xx} \,\mu \,\tau _0\nonumber \\&\quad -\,12\,mR_e^5 I_{xx} \,\mu \,\tau _2 +18\,mR_e^3 I_{xx} \,\mu \,\tau _0.\end{aligned}$$
(53)
$$\begin{aligned}&C_1 =-2\,R_e^8 \omega _T^2 I_{xx} +4\,\mu \,mR_e^5 +12\,\mu \,mR_e^5 \tau _2 -24\,R_e^3 I_{xx} \,\mu \nonumber \\&\quad +\,18\,R_e^3 \mu \,I_{zz} -9\,mR_e^3 I_{xx} \,\mu \,\omega _T^2 I_{zz} \,\tau _0 \nonumber \\&\quad -\,9\,mI_{xx} \,\mu ^2\tau _0 \,I_{yy} -72\,mI_{xx}^2 \mu ^2\tau _2 +11\,mR_e^5 I_{xx} \,\mu \,\omega _T^2 I_{zz} \nonumber \\&\quad +\,6\,m^2R_e^5 \omega _T^2 \tau _2 \,\mu \,I_{xx} +3\,R_e^3 I_{xx} \,\mu \,\omega _T^2 I_{yy} \,I_{zz} \nonumber \\&\quad -\,6\,\mu \,mR_e^5 \tau _0 +3\,m^2R_e^5 \omega _T^2 \mu \,\tau _0 \,I_{xx} +2\,R_e^8 \omega _T^2 I_{zz} \nonumber \\&\quad +\,3\,mR_e^5 I_{xx} \,\mu \,\omega _T^2 I_{yy} +2\,m\omega _T^2 R_e^{10} +9\,R_e^3 I_{xx}\,\mu \,\omega _T^2 I_{zz}^2 \nonumber \\&\quad -\,2\,m^2\omega _T^4 I_{xx} \,R_e^{10} +2\,m^2I_{xx} \,\mu \,\omega _T^2 R_e^7 +18\,mI_{xx} \,\mu ^2\tau _2 \,I_{yy} \nonumber \\&\quad -\,72\,m^2\mu ^2\tau _2 \,\tau _0 \,I_{xx} -12\,R_e ^3I_{xx}^2 \mu \,\omega _T^2 I_{zz} \nonumber \\&\quad +\,108\,m^2I_{xx} \,\tau _2 ^2\mu ^2-6\,m^2R_e^2 I_{xx} \,\mu ^2\tau _0 +12\,m^2R_e^2 I_{xx}\,\mu ^2\tau _2 \nonumber \\&\quad -\,27\,mI_{xx} \,\mu ^2\tau _0 \,I_{zz} -12\,mR_e^5 I_{xx}^2 \mu \,\omega _T^2 \nonumber \\&\quad +\,9\,m^2\mu ^2\tau _0 ^2I_{xx} \!+\!54\,mI_{xx} \,\mu ^2\tau _2 \,I_{zz} \!+\!30\,mR_e^3 I_{xx} \,\mu \,\tau _2 \,\omega _T^2 I_{zz}\nonumber \\&\quad -\,18\,mR_e^3 \mu \,\tau _0 +36\,mI_{xx}^2 \mu ^2\tau _0 \nonumber \\&\quad +\,60\,mR_e^3 \mu \,\tau _2 +6\,R_e^3 \mu \,I_{yy}. \end{aligned}$$
(54)
$$\begin{aligned}&C_0 =-9\,m^2\mu ^2\tau _0^2 +2\,m^2\omega _T^4 R_e^{10} -11\,\mu \,mR_e^5 \omega _T^2 I_{zz} \nonumber \\&\quad -\,3\,\mu \,mR_e^5 \omega _T^2 I_{yy} +3\,R_e^3 I_{xx} \,\mu \,\omega _T^2 I_{yy} +21\,R_e^3 I_{xx} \,\mu \,\omega _T^2 I_{zz}\nonumber \\&\quad -\,3\,m^2R_e^5 \omega _T^2 \mu \,\tau _0 -3\,R_e^3 \mu \,\omega _T^2 I_{yy} \,I_{zz} +14\,\omega _T^2 R_e^5 mI_{xx} \,\mu \nonumber \\&\quad -\,6\,m^2R_e^5 \omega _T^2 \tau _2 \,\mu -9\,R_e^3 \mu \,\omega _T^2 I_{zz}^2\nonumber \\&\quad -\,18\,m\mu ^2\tau _2 \,I_{yy} +72\,mI_{xx} \,\tau _2 \,\mu ^2-36\,mI_{xx} \,\mu ^2\tau _0 \nonumber \\&\quad -\,54\,m\mu ^2\tau _2 \,I_{zz} +9\,m\mu ^2\tau _0 \,I_{yy} -108\,m^2\mu ^2\tau _2^2 \nonumber \\&\quad -\,2\,m^2\mu \,\omega _T^2 R_e^7 -12\,R_e ^3\omega _T^2 I_{xx}^2 \mu +72\,m^2\mu ^2\tau _2 \,\tau _0 \nonumber \\&\quad +\,6\,m^2R_e^2 \mu ^2\tau _0 -12\,m^2R_e^2 \mu ^2\tau _2 +27\,m\mu ^2\tau _0 \,I_{zz} \nonumber \\&\quad +\,9\,mR_e^3 \mu \,\omega _T^2 I_{zz} \,\tau _0 -9\,mR_e^3 \omega _T^2 I_{xx} \,\mu \,\tau _0 \nonumber \\&\quad -\,30\,mR_e^3 \mu \,\tau _2 \,\omega _T^2 I_{zz} +30\,mR_e^3 \omega _T^2 I_{xx} \,\tau _2 \,\mu . \end{aligned}$$
(55)
$$\begin{aligned}&D_2 =-2\,m-2\,I_{yy} -\omega _T^2 I_{yy} \,I_{zz} \,m-m^2\omega _T^2 I_{yy} \,R_e^2.\end{aligned}$$
(56)
$$\begin{aligned}&D_1 \!=\!2\!+\!\omega _T^2 I_{zz} \,m\!+\!m^2\omega _T^2 R_e^2 \!+\!\omega _T^2 I_{yy} \,I_{zz} \!-\!\omega _T^2 I_{yy} \,m.\end{aligned}$$
(57)
$$\begin{aligned}&D_0 =-\omega _T^2 I_{zz} +\omega _T^2 I_{yy}. \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Xu, S. On the nonlinear stability of relative equilibria of the full spacecraft dynamics around an asteroid. Nonlinear Dyn 78, 1–13 (2014). https://doi.org/10.1007/s11071-013-1203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1203-2

Keywords

Navigation