Skip to main content
Log in

Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamic response of a high-static-low-dynamic stiffness (HSLDS) isolator formed by parallelly connecting a negative stiffness corrector which uses compressed Euler beams to a linear isolator is investigated in this study. Considering stiffness and load imperfections, the resonance frequency and response of the proposed isolator are obtained by employing harmonic balance method. The HSLDS isolator with quasi-zero stiffness characteristics can offer the lowest resonance frequency provided that there is only stiffness or load imperfection. If load imperfection always exists, there is no need to make the stiffness to zero since it cannot provide the lowest resonance frequency any longer. The reason for this unusual phenomenon is given. The dynamic response will exhibit softening, hardening, and softening-to-hardening characteristics, depending on the combined effect of load imperfection, stiffness imperfection, and excitation amplitude. In general, load imperfection makes the response exhibit softening characteristic and increasing stiffness imperfection will weak this effect. Increasing the excitation level will make the isolator undergo complex switch between different stiffness characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Peng, Z., Meng, G., Lang, Z., Zhang, W., Chu, F.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method. Int. J. Nonlinear Mech. 47(10), 1073–1080 (2012)

    Article  Google Scholar 

  2. Sun, J., Huang, X., Liu, X., Xiao, F., Hua, H.: Study on the force transmissibility of vibration isolators with geometric nonlinear damping. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-1027-0

  3. Tang, B., Brennan, M.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013)

    Article  Google Scholar 

  4. Carrella, A.: Passive Vibration Isolators with High-Static-Low-Dynamic-Stiffness. University of Southampton, Southampton (2008)

    Google Scholar 

  5. Platus, D.L., Negative-stiffness-mechanism vibration isolation systems. In: Proceedings of SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, pp. 98–105. (1999)

  6. Yang, J., Xiong, Y., Xing, J.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332(1), 167–183 (2013)

    Google Scholar 

  7. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315(3), 700–711 (2008)

    Article  Google Scholar 

  8. Carrella, A., Brennan, M., Waters, T.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3), 678–689 (2007)

    Article  Google Scholar 

  9. Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330(26), 6311–6335 (2011)

    Article  Google Scholar 

  10. Carrella, A., Brennan, M., Waters, T., Shin, K.: On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib. 315(3), 712–720 (2008)

    Google Scholar 

  11. Zhou, N., Liu, K.: A tunable high-static-low-dynamic stiffness vibration isolator. J. Sound Vib. 329(9), 1254–1273 (2010)

    Article  Google Scholar 

  12. Alabuzhev, P., Gritchin, A., Kim, L., Migirenko, G., Chon, V., Stepanov, P.: Vibration Protecting and Measuring Systems with Quasi-zero Stiffness. Hemisphere Publishing Co., New York (1989)

    Google Scholar 

  13. Carrella, A., Brennan, M., Kovacic, I., Waters, T.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4), 707–717 (2009)

    Article  Google Scholar 

  14. Virgin, L., Davis, R.: Vibration isolation using buckled struts. J. Sound Vib. 260, 965–973 (2003)

    Article  Google Scholar 

  15. Gatti, G., Kovacic, I., Brennan, M.J.: On the response of a harmonically excited two degree-of-freedom system consisting of a linear and a nonlinear quasi-zero stiffness oscillator. J. Sound Vib. 329(10), 1823–1835 (2010)

    Article  MathSciNet  Google Scholar 

  16. Carrella, A., Brennan, M., Waters, T., Lopes Jr, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)

    Article  Google Scholar 

  17. Guo, P., Lang, Z., Peng, Z.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012)

    Google Scholar 

  18. Hayashi, C., Shepard, S., Winkler, I., Glenn, S., Harris, E., Quaid, D., Hershey, B., Kaufman, P., Chartoff, R., Wolfe, T.: Nonlinear Oscillations in Physical Systems. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  19. Szemplińska-Stupnicka, W., Bajkowski, J.: The 1/2 subharmonic resonance and its transition to chaotic motion in a nonlinear oscillator. Int. J. Nonlinear Mech. 21(5), 401–419 (1986)

    Article  MATH  Google Scholar 

  20. Carnegie, W., Reif, Z.: Ultraharmonic resonance of a system with an asymmetrical restoring force characteristic. J. Mech. Eng. Sci. 11(6), 592–597 (1969)

    Article  Google Scholar 

  21. Ravindra, B., Mallik, A.: Performance of non-linear vibration isolators under harmonic excitation. J. Sound Vib. 170(3), 325–337 (1994)

    Article  MATH  Google Scholar 

  22. Xiao, H., Brennan, M., Shao, Y.: On the undamped free vibration of a mass interacting with a Hertzian contact stiffness. Mech. Res. Commun. 38(8), 560–564 (2011)

    Article  MATH  Google Scholar 

  23. Kovacic, I., Brennan, M.J., Lineton, B.: On the resonance response of an asymmetric Duffing oscillator. Int. J. Nonlinear Mech. 43(9), 858–867 (2008)

    Article  Google Scholar 

  24. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and Their Behaviour. Wiley, New York (2011)

    Book  Google Scholar 

  25. Leng, X., Wu, C., Ma, X., Meng, G., Fang, T.: Bifurcation and chaos analysis of stochastic Duffing system under harmonic excitations. Nonlinear Dyn. 42(2), 185–198 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu, X., Huang, X., Zhang, Z., Hua, H.: Influence of excitation amplitude and load on the characteristics of Quasi-Zero stiffness isolator. J. Mech. Eng. 49(6), 89–94 (2013). (in Chinese)

    Article  Google Scholar 

  27. Hamdan, M., Burton, T.: On the steady state response and stability of non-linear oscillators using harmonic balance. J. Sound Vib. 166(2), 255–266 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

Download references

Acknowledgments

This research has been supported in part by the National Natural Science Foundation of China (NSFC) under Grant No. 11202128 and the Foundation for Innovative Research Groups of the NSFC under Grant No. 51221063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuchang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Liu, X., Sun, J. et al. Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear Dyn 76, 1157–1167 (2014). https://doi.org/10.1007/s11071-013-1199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1199-7

Keywords

Navigation