Skip to main content
Log in

Stability analysis of inerter-based n-DOF vibration systems containing semi-active switched elements

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the stability problem of inerter-based semi-active n-degree-of-freedom (n-DOF) vibration systems containing semi-active switched elements, where the results can be applied to the design of many vibration control systems, such as building vibrations, vehicle suspensions, isolators, etc. Since introducing switched elements to n-DOF vibration systems may lead to instability, it is theoretically and practically meaningful to investigate the stability of n-DOF vibration systems containing semi-active switched elements. Necessary and sufficient conditions for the global asymptotic stability of a single-degree-of-freedom (SDOF) system containing at most one switched spring, one switched inerter, and one switched damper are derived, by solving the explicit solutions of the system states and analyzing the properties of energy functions. Based on the Lyapunov approach, a series of asymptotic stability conditions for the multi-degree-of-freedom (MDOF) system containing one semi-active switched inerter or one semi-active switched spring are derived. Finally, numerical simulation examples are presented to illustrate the stability results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availibility Statement

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002)

    Article  MathSciNet  Google Scholar 

  2. Chen, M.Z.Q., Hu, Y.: Inerter and its application in vibration control systems. Springer (2019)

    Book  Google Scholar 

  3. Chen, M.Z.Q., Wang, K., Chen, G.: Passive network synthesis: advances with inerter. World Scientific (2019)

    Book  Google Scholar 

  4. Wang, K., Chen, M.Z.Q.: On realizability of specific biquadratic impedances as three-reactive seven-element series-parallel networks for inerter-based mechanical control. IEEE Trans. Autom. Control 66(1), 340–345 (2020)

    Article  MathSciNet  Google Scholar 

  5. Hughes, T.H.: Minimal series-parallel network realizations of bicubic impedances. IEEE Trans. Autom. Control 65(12), 4997–5011 (2020)

    Article  MathSciNet  Google Scholar 

  6. Shen, Y., Jiang, J.Z., Neild, S.A., Chen, L.: Vehicle vibration suppression using an inerter-based mechatronic device. In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234(10–11), 2592–2601 (2020)

  7. Alshabatat, N.T., Shaqarin, T.: Impact of using an inerter on the performance of vehicle active suspension. Adv. Sci. Technol. Res. J. 16(3), 331–339 (2022)

    Article  Google Scholar 

  8. Liu, P., Ning, D., Luo, L., Zhang, N., Du, H.: An electromagnetic variable inertance and damping seat suspension with controllable circuits. IEEE Trans. Industr. Electron. 69(3), 2811–2821 (2021)

    Article  Google Scholar 

  9. Zhang, S.Y., Neild, S., Jiang, J.Z.: Optimal design of a pair of vibration suppression devices for a multi-storey building. Struct. Control. Health Monit. 27(3), e2498 (2020)

    Article  Google Scholar 

  10. Xu, K., Bi, K., Han, Q., Li, X., Du, X.: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study. Eng. Struct. 182, 101–111 (2019)

    Article  Google Scholar 

  11. Sarkar, S., Fitzgerald, B.: Vibration control of spar-type floating offshore wind turbine towers using a tuned mass-damper-inerter. Struct. Control. Health Monit. 27(1), e2471 (2020)

    Article  Google Scholar 

  12. Lazar, I., Neild, S., Wagg, D.: Using an inerter-based device for structural vibration suppression. Earthq. Eng. Struct. Dyn. 43(8), 1129–1147 (2014)

    Article  Google Scholar 

  13. Zhang, S.Y., Jiang, J.Z., Neild, S.A.: Passive vibration control: a structure-immittance approach. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473(2201), 20170011 (2017)

  14. Su, N., Bian, J., Chen, Z., Xia, Y.: A novel lever-type inerter-based vibration absorber. Int. J. Mech. Sci. 254, 108440 (2023)

    Article  Google Scholar 

  15. Shen, Y., Hua, J., Fan, W., Liu, Y., Yang, X., Chen, L.: Optimal design and dynamic performance analysis of a fractional-order electrical network-based vehicle mechatronic ISD suspension. Mech. Syst. Signal Process. 184, 109718 (2023)

    Article  Google Scholar 

  16. Shi, B., Dai, W., Yang, J.: Performance analysis of a nonlinear inerter-based vibration isolator with inerter embedded in a linkage mechanism. Nonlinear Dyn. 109(2), 419–442 (2022)

    Article  Google Scholar 

  17. Chowdhury, S., Banerjee, A.: The nonlinear dynamic analysis of optimum nonlinear inertial amplifier base isolators for vibration isolation. Nonlinear Dyn. 111, 12749–12786 (2023)

    Article  Google Scholar 

  18. Chen, M.Z.Q., Hu, Y., Huang, L., Chen, G.: Influence of inerter on natural frequencies of vibration systems. J. Sound Vib. 333(7), 1874–1887 (2014)

    Article  Google Scholar 

  19. Yamamoto, K.: Synthesis of passive interconnections in mass chains achieving a scale-free performance. In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 235(9), 1709–1717 (2021)

  20. Li, H., Chen, M.Z.Q.: Achievable dynamic responses of general undamped mass-chain systems. Mech. Syst. Signal Process. 163, 108108 (2022)

    Article  Google Scholar 

  21. Garrido, H., Curadelli, O., Ambrosini, D.: On the assumed inherent stability of semi-active control systems. Eng. Struct. 159, 286–298 (2018)

    Article  Google Scholar 

  22. Hu, Y., Chen, M.Z.Q., Sun, Y.: Comfort-oriented vehicle suspension design with skyhook inerter configuration. J. Sound Vib. 405, 34–47 (2017)

    Article  Google Scholar 

  23. Ribakov, Y., Gluck, J.: Active control of MDOF structures with supplemental electrorheological fluid dampers. Earthq. Eng. Struct. Dyn. 28(2), 143–156 (1999)

    Article  Google Scholar 

  24. Bitaraf, M., Ozbulut, O.E., Hurlebaus, S., Barroso, L.: Application of semi-active control strategies for seismic protection of buildings with mr dampers. Eng. Struct. 32(10), 3040–3047 (2010)

    Article  Google Scholar 

  25. Wang, Y., Meng, H., Zhang, B., Wang, R.: Analytical research on the dynamic performance of semi-active inerter-based vibration isolator with acceleration-velocity-based control strategy. Struct. Control. Health Monit. 26(4), e2336 (2019)

    Article  Google Scholar 

  26. Min, C., Dahlmann, M., Sattel, T.: Steady state response analysis for a switched stiffness vibration control system based on vibration energy conversion. Nonlinear Dyn. 103, 239–254 (2021)

    Article  Google Scholar 

  27. Corless, M., Leitmann, G.: Destabilization via active stiffness. Dyn. Control 7(3), 263–268 (1997)

    Article  MathSciNet  Google Scholar 

  28. Hu, Y., Hua, T., Chen, M.Z.Q., Shi, S., Sun, Y.: Instability analysis for semi-active control systems with semi-active inerters. Nonlinear Dyn. 105(1), 99–112 (2021)

    Article  Google Scholar 

  29. Ramaratnam, A., Jalili, N.: A switched stiffness approach for structural vibration control: Theory and real-time implementation. J. Sound Vib. 291(1–2), 258–274 (2006)

    Article  MathSciNet  Google Scholar 

  30. Hu, Y., Hua, T., Chen, M.Z.Q., Shi, S., Sun, Y.: Inherent stability analysis for multibody systems with semi-active inerters. J. Sound Vib. 535, 117073 (2022)

    Article  Google Scholar 

  31. Chen, C.T.: Linear system theory and design. Oxford University Press (1999)

    Google Scholar 

  32. Khalil, H.K.: Nonlinear Systems. Pearson (2013)

    Google Scholar 

  33. Banner, A.: The calculus lifesaver: all the tools you need to excel at calculus. Princeton University Press (2007)

    Google Scholar 

  34. Kwak, M.K.: Dynamic Modeling and Active Vibration Control of Structures. Springer (2022)

    Book  Google Scholar 

  35. Liberzon, D.: Switching in systems and control. Springer (2003)

    Book  Google Scholar 

  36. Makihara, K., Ecker, H., Dohnal, F.: Stability analysis of open-loop stiffness control to suppress self-excited vibrations. J. Vib. Control 11(5), 643–669 (2005)

    Article  Google Scholar 

  37. Shimizu, K., Yamada, T., Tagami, J., Kurino, H.: Vibration tests of actual buildings with semi-active switching oil damper. In: Proceedings of the 13th World Conference on Earthquake Engineering, pp. 1–6. Vancouver, B.C., Canada (2004)

  38. Hu, Y., Chen, M.Z.Q., Xu, S., Liu, Y.: Semiactive inerter and its application in adaptive tuned vibration absorbers. IEEE Trans. Control Syst. Technol. 25(1), 294–300 (2016)

    Article  Google Scholar 

  39. Du, G., Huang, X., Li, Y., Ouyang, Q., Wang, J.: Performance of a semi-active/passive integrated isolator based on a magnetorheological elastomer and spring. Smart Mater. Struct. 26(9), 095024 (2017)

    Article  Google Scholar 

  40. Liao, G.J., Gong, X.L., Xuan, S.H., Kang, C.J., Zong, L.H.: Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct. 23(1), 25–33 (2012)

    Article  Google Scholar 

  41. Liu, Y., Waters, T., Brennan, M.: A comparison of semi-active damping control strategies for vibration isolation of harmonic disturbances. J. Sound Vib. 280(1–2), 21–39 (2005)

    Article  MathSciNet  Google Scholar 

  42. Wang, Y., Ding, H., Chen, L.Q.: Averaging analysis on a semi-active inerter-based suspension system with relative-acceleration-relative-velocity control. J. Vib. Control 26(13–14), 1199–1215 (2020)

  43. Xu, W., Wang, K., Chen, M.Z.Q.: Supplementary material to: Stability analysis of inerter-based n-DOF vibration systems containing semi-active switched elements. supplementary material available at https://doi.org/10.1007/s11071-024-09573-0

  44. Cruz, C., Miranda, E.: Damping ratios of the first mode for the seismic analysis of buildings. J. Struct. Eng. 147(1), 04020300 (2021)

    Article  Google Scholar 

  45. Wang, F.C., Su, W.J.: Impact of inerter nonlinearities on vehicle suspension control. Veh. Syst. Dyn. 46(7), 575–595 (2008)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 62373166, 61873129, the Natural Science Foundation of Jiangsu Province under Grant BK20211234, the China Postdoctoral Science Foundation under Grant 2022M71136.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 78 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Wang, K. & Chen, M.Z.Q. Stability analysis of inerter-based n-DOF vibration systems containing semi-active switched elements. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09573-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09573-0

Keywords

Navigation