Skip to main content
Log in

Nonlinear modes of piecewise linear systems under the action of periodic excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The approach for calculation of nonlinear normal modes (NNM) of essential nonlinear piecewise linear systems’ forced vibrations is suggested. The combination of the Shaw–Pierre NNMs and the Rauscher method is the basis of this approach. Using this approach, the nonautonomous piecewise linear system is transformed into autonomous one. The Shaw–Pierre NNMs are calculated for this autonomous system. Torsional vibrations of internal combustion engine power plant are analyzed using these NNMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Avramov, K. V., Mikhlin Y.: Nonlinear dynamics of elastic systems: Models, methods and approaches, vol. 1. Scientific Centre “Regular and Chaotic Dynamics”, Moscow (2010) (in Russian)

  2. Wolf, H., Kodvanja, J., Bjelovucic-Kopilovic, S.: Effect of smoothing piecewise-linear oscillators on their stability predictions. J. Sound Vib. 270, 917–932 (2004)

    Article  Google Scholar 

  3. Begley, C.J., Virgin, L.N.: A comparison of piecewise linear and continuous approximating models. Mech. Res. Commun. 22, 527–532 (1995)

    Article  MATH  Google Scholar 

  4. Chati, M., Rand, R., Mukherjee, S.: Modal analysis of a cracked beam. J. Sound Vib. 207, 249–270 (1997)

    Article  MATH  Google Scholar 

  5. Todd, M.D., Virgin, L.N.: Natural frequency considerations of an impact oscillator. J. Sound Vib. 194, 452–460 (1996)

    Article  Google Scholar 

  6. Vestroni, F., Luongo, A., Paolone, A.: A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system. Nonlinear Dyn. 54, 379–393 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jiang, D., Pierre, C., Shaw, S.W.: Large-amplitude non-linear normal modes of piecewise linear systems. J. Sound Vib. 272, 869–891 (2004)

    Google Scholar 

  8. Albert, C., Luo, J.: The mapping dynamics of periodic motions for a threepiecewise linear system under a periodic excitation. J. Sound Vib. 283, 723–748 (2005)

    Article  MATH  Google Scholar 

  9. Kim, T.C., Rook, T.E., Singh, R.: Super- and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method. J. Sound Vib. 281, 965–993 (2005)

    Article  Google Scholar 

  10. Farong, Z., Parker, R.G.: Non-linear dynamics of a one-way clutch in belt-pulley systems. J. Sound Vib. 279, 285–308 (2005)

    Article  Google Scholar 

  11. Ji, J.C.: Dynamics of a piecewise linear system subjected to a saturation constraint. J. Sound Vib. 271, 905–920 (2004)

    Article  MATH  Google Scholar 

  12. Avramov, K.V., Belomytsev, A.S., Karaban, V.N.: Regions of chaotic oscillations of discrete mechanical systems with piecewise-linear elastic characteristics. Int. Appl. Mech. 30, 396–402 (1994)

    Article  Google Scholar 

  13. Avramov, K.V., Karaban, V.N.: Resonance under random vibrations of discrete dynamic systems with piecewise-linear elastic characteristics. Int. Appl. Mech. 33, 584–588 (1997)

    Article  Google Scholar 

  14. Avramov, K.V.: Bifurcation analysis of a vibropercussion system by the method of amplitude surfaces. Int Appl Mech 38, 1151–1156 (2001)

    Article  MathSciNet  Google Scholar 

  15. Chen, S.C., Shaw, S.W.: Normal modes for piecewise linear vibratory systems. Nonlinear Dyn. 10, 135–164 (1996)

    Article  MathSciNet  Google Scholar 

  16. Jiang, D., Pierre, C., Shaw, S.W.: Nonlinear normal modes for vibratory systems under harmonic excitation. J. Sound Vib. 288, 791–812 (2005)

    Article  Google Scholar 

  17. Vakakis, A., Manevitch, L., Mikhlin, Yu., Pilipchuk, V., Zevin, A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New-York (1996)

    Book  MATH  Google Scholar 

  18. Avramov, K.V.: Analysis of forced vibrations by nonlinear modes. Nonlinear Dyn. 53, 117–127 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Avramov, K.V.: Nonlinear modes of parametric vibrations and their applications to beams dynamics. J. Sound Vib. 322, 476–489 (2009)

    Article  MathSciNet  Google Scholar 

  20. Mikhlin, Y., Avramov, K.V.: Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments. Appl. Mech. Rev. 63, 4–20 (2010)

    Article  Google Scholar 

  21. Avramov, K.V., Mikhlin, YuV: Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev. 65, 4–24 (2013)

    Article  Google Scholar 

  22. Pesheck, E., Pierre, C., Shaw, S.W.: A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J. Sound Vib. 249, 971–993 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  24. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Avramov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uspensky, B., Avramov, K. Nonlinear modes of piecewise linear systems under the action of periodic excitation. Nonlinear Dyn 76, 1151–1156 (2014). https://doi.org/10.1007/s11071-013-1198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1198-8

Keywords

Navigation