Skip to main content

Advertisement

Log in

Airship horizontal trajectory tracking control based on Active Disturbance Rejection Control (ADRC)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Aiming at flight property of airship, a trajectory tracking controller of airship horizontal model is designed based on active disturbance rejection control (ADRC). The six Degree of Freedom (DOF) dynamic model of airship is simplified at a horizontal plane. ADRC is used to realize the decoupling control for the multivariable system. The uncertain items of the model and external disturbances are estimated by the extended state observer (ESO) and dynamic feedback compensation is carried on at real time. The disturbance of wind is added to the simulation environment. The simulation results show that the designed tracking controller can overcome the influences of uncertain items of the model and external disturbances, and track the desired trajectory rapidly and steadily, and possess good robustness and control performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bennaceur, S., Azouz, N.: Contribution of the added masses in the dynamic modeling of flexible airships. Nonlinear Dyn. 67(1), 215–226 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Colozza, A., Dolce, J.L.: High-altitude, long-endurance airships for coastal surveillance. NASA/TM-2005-213427 (2005)

  3. Sano, M., Komatsu, K., Kimura, J., Smith, M.: Airship shaped balloon test flights to the stratosphere. AIAA 2003-6798 (2003)

  4. Khoury, G.A., Gillett, J.D.: Airship Technology. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  5. Li, Z., Wu, L., Zhang, J., Li, Y.: Review of dynamic and control of stratospheric airships. Adv. Mech. 42(4), 482–492 (2012) (in Chinese)

    MATH  Google Scholar 

  6. Gomes, S., Ramos, J.: Airship dynamic modeling for autonomous operation. In: Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Belgium, pp. 3462–3467 (1998)

    Google Scholar 

  7. Mueller, J.B., Paluszek, M.A., Zhao, Y.: Development of an aerodynamic model and control law design for a high altitude airship. AIAA 6474-6479 (2004)

  8. Schmidt, D.K.: Dynamic modeling, control, and station keeping guidance of a large high-altitude near-space airship. AIAA 2006-6781 (2006)

  9. Miller, C.J., Sullivan, J., McDonald, S.: High altitude airship simulation control and low altitude flight demonstration. AIAA 2007-2766 (2007)

  10. Lee, S., Lee, H.: Back-stepping approach of trajectory tracking control for the mid-altitude unmanned airship. AIAA 2007-6319 (2007)

  11. Repoulias, F., Papadopoulos, E.: Robotic airship trajectory tracking control using a back-stepping methodology. In: 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA (2008)

    Google Scholar 

  12. Azinheira, J.R., Moutinho, A., Paiva, E.C.: A backstepping controller for path-tracking of an underactuated autonomous airship. Int. J. Robust Nonlinear Control 19(4), 418–441 (2009)

    Article  MATH  Google Scholar 

  13. Paiva, E.C., Benjovengo, F., Bueno, S.S.: Sliding mode control for the path following of an unmanned airship. In: 6 IFAC Symposium on Intelligent Autonomous Vehicles, Toulouse, France, pp. 221–227 (2007)

    Google Scholar 

  14. Park, C., Lee, H., Tahk, M., Bang, H.: Airship control using neural network augmented model inversion. In: Proceedings of 2003 IEEE Conference on Control Applications, Istanbul, Turkey, pp. 558–563 (2003)

    Google Scholar 

  15. Kahale, E., Bestaoui, Y.: Autonomous path tracking of a kinematic airship in presence of unknown gust. J. Intell. Robot. Syst. 69, 431–446 (2013)

    Article  Google Scholar 

  16. Han, J.: Auto-disturbances-rejection controller and its applications. Control Decis. 13(1), 19–23 (1998) (in Chinese)

    Google Scholar 

  17. Qin, C., Qi, N., Zhu, K.: Active disturbance rejection attitude control design for hypersonic vehicle. J. Syst. Eng. Electron. 33(7), 1607–1610 (2011) (in Chinese)

    Google Scholar 

  18. Ouyang, J.: Research on modeling and control of an unmanned airship (2003) (in Chinese)

  19. Slotine, J., Li, W.: Applied Nonlinear Control [M], pp. 245–253. Prentice Hall, Englewood Cliffs (1991)

    Google Scholar 

  20. Ibragimov, N., Magri, F.: Geometric proof of Lie’s linearization theorem. Nonlinear Dyn. 36(1), 41–46 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Almutairi, N.B., Zribi, M.: On the sliding mode control of a ball on a beam system. Nonlinear Dyn. 59(1–2), 221–238 (2010)

    Article  MATH  Google Scholar 

  22. Goforth, F.J., Gao, Z.: An active disturbance rejection control solution for hysteresis compensation. In: American Control Conference, USA, pp. 2202–2208 (2008)

    Google Scholar 

  23. Azinheira, J., Paiva, E.C., Bueno, S.S.: Influence of wind speed on airship dynamics. J. Guid. Control Dyn. 25(6), 1116–1124 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61273138 and 61174094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglin Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, E., Pang, J., Sun, N. et al. Airship horizontal trajectory tracking control based on Active Disturbance Rejection Control (ADRC). Nonlinear Dyn 75, 725–734 (2014). https://doi.org/10.1007/s11071-013-1099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1099-x

Keywords

Navigation