Skip to main content
Log in

Contribution of the added masses in the dynamic modelling of flexible airships

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents an efficient modelling of autonomous flexible airships. These flying objects lighter than air (L.T.A.) are assumed to undergo large rigid-body motion and small elastic deformation. The formalism used is based on the Euler–Lagrange approach. The airship considered in this study is represented by a flexible ellipsoid of revolution. The coupling between the added masses issued from the overall body motion and those issued from the elasticity was determined by means of the velocity potential flow theory. We develop a fully analytical methodology with some assumptions. This feature distinguishes the current work from earlier treatments of the coupling, it allows one to minimise the number of degrees of freedom of the dynamical model, and renders the model suitable for use in the algorithms of stabilisation and trajectory generation. Numerical simulations are presented at the end of this paper. They underline the interest of the developed theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khoury, G.A., Gillet, J.D.: Airship Technology. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Azouz, N., Bestaoui, Y., Lemaitre, O.: Dynamic analysis of airships with small deformations. In: Proceedings of 3rd IEEE Workshop on Robot Motion and Control, Poland (2002)

    Google Scholar 

  3. Li, Y., Nahon, M., Sharf, I.: Dynamics modeling and simulation of Flexible Airships. AIAA J. 47(3), 592–601 (2009)

    Article  Google Scholar 

  4. Liao, L., Pasternak, I.: A review of airship structural research and developments. Prog. Aerosp. Eng. 45(4–5), 83–96 (2009)

    Article  Google Scholar 

  5. Bestaoui, Y., Hamel, T.: Dynamic modeling of small autonomous blimps. In: Proceedings of IEEE Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 579–584 (2000)

    Google Scholar 

  6. Pettit, C.L.: Uncertainty quantification in aeroelasticity: recent results and research challenges. J. Aircr. 41(5), 1217–1229 (2004)

    Article  Google Scholar 

  7. Bianchin, M., Quaranta, G., Mantegazza, P.: State space reduced order models for static aeroelasticity and flight mechanics of flexible aircrafts. In: 17th National Conference AIDAA, Italy (2003)

    Google Scholar 

  8. Simo, J.C.: The role of non-linear theories in transient dynamic analysis of flexible aircrafts. J. Sound Vib. 119, 487–508 (1987)

    Article  MathSciNet  Google Scholar 

  9. Roskam, J.: Flight Performance of Fixed and Rotary Wing Aircraft. Butterworth/Heinemann, Stoneham/London (2006)

    Google Scholar 

  10. Tuzcu, I.: On the stability of flexible aircraft. Aerosp. Sci. Technol. 12(5), 376–384 (2008)

    Article  Google Scholar 

  11. Pounds, P., Mahony, R., Hynes, P., Roberts, J.: Design of a four-rotor aerial robot. In: Transactions of Australian Conference on Robotics and Automation, pp. 145–150 (2002)

    Google Scholar 

  12. Boyer, F., Coiffet, Ph.: Generalization of Newton-Euler model for flexible manipulators. J. Robot. Syst. 13(1), 11–24 (1998)

    Article  Google Scholar 

  13. Bennaceur, S., Azouz, N., Abichou, A.: Modeling and control of flexible blimps. In: Transactions of AIP Mediterranean Conference CISA’08, Annaba, vol. 1019, pp. 397–407 (2008)

    Google Scholar 

  14. Bathe, K.J., Ramm, E., Wilson, E.L.: Finite elements for large deformation dynamic analysis. Int. J. Numer. Methods Eng. 9, 353–386 (1975)

    Article  MATH  Google Scholar 

  15. Bennaceur, S., Azouz, N., Boukraa, D.: An efficient modelling of flexible Airships: Lagrangian approach. In: Proceeding of the ESDA’06 ASME International Conference, Torino, Italy (2006)

    Google Scholar 

  16. Yang, J., Lei, F., Xie, X.: Dynamic Analysis of Fluid-Structure Interaction on Cantilever Structure. Springer, Netherlands (2009)

    Google Scholar 

  17. De Langre, E., Païdoussis, M., Doaré, O., Modarres-Sadeghi, Y.: Flutter of long flexible cylinders in axial flow. J. Fluid Mech. 571, 371–389 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fossen, T.: Guidance and Control of Ocean Vehicles. Wiley, Chichester (1996)

    Google Scholar 

  19. El Omari, K., Schall, E., Koobus, B., Dervieux, A., Amara, M., Dumas, J.-P.: Fluid-structure coupling of a turbulent flow and a generic blimp structure. In: Transactions of the Mathematical Symposium Garcia de Galdeano, Spain, vol. 33, pp. 369–376 (2006)

    Google Scholar 

  20. Taylor, R.L., Makerle, J.: Fluid-structure interaction approach and boundary elements approach. Finite Elem. Anal. Des. 31, 231–240 (2006)

    Google Scholar 

  21. Liu, J., Lu, C., Xue, L.: Investigation of airship aeroelasticity using fluid-structure interaction. J. Hydrodyn. Ser. B 20(2), 164–171 (2008)

    Article  Google Scholar 

  22. Bessert, N., Frederich, O.: Nonlinear airship aeroelasticity. J. Fluids Struct. 21, 731–742 (2005)

    Article  Google Scholar 

  23. Gibert, R.-J.: Vibrations des structures. Interactions avec les fluides. Eyrolles, Paris (1988)

    MATH  Google Scholar 

  24. Shabana, A.: Dynamics of Multibody Systems. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  25. Zienckiewicz, O.C., Taylor, R.L.: The Finite Element Method, 4th edn. McGraw-Hill, New York (1997)

    Google Scholar 

  26. Hygounenc, E., Kyun Jung, II, Soueres, Ph., Lacroix, S.: The autonomous blimp project of LAAS-CNRS: achievements in flight control and terrain mapping. Int. J. Robot. Res. 23(4–5), 473–511 (2004)

    Article  Google Scholar 

  27. Lamb, H.: On the Motion of Solids Through a Liquid. Hydrodynamics, 6th edn. Dover, New York (1945)

    Google Scholar 

  28. Macagno, E.O., Landweber, L.: Irrotational motion of the liquid surrounding a vibrating ellipsoid of revolution. J. Ship Res. 2(1), 37–49 (1958)

    MathSciNet  Google Scholar 

  29. Lewis, F.M.: The inertia of the water surrounding a vibrating ship. In: Transactions of the 37th General Meeting of the SNAME, New York, vol. 37, pp. 1–20 (1929)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoufel Azouz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennaceur, S., Azouz, N. Contribution of the added masses in the dynamic modelling of flexible airships. Nonlinear Dyn 67, 215–226 (2012). https://doi.org/10.1007/s11071-011-9973-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9973-x

Keywords

Navigation