Skip to main content
Log in

Bifurcation response and Melnikov chaos in the dynamic of a Bose–Einstein condensate loaded into a moving optical lattice

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate global bifurcation of a Bose–Einstein condensate with both repulsive two-body interaction between atoms and attractive three-body interaction loaded into a traveling optical lattice. Slow-flow equations of the traveling wave function are the first to derive and the reduced amplitude equation is obtained. The Melnikov method is applied on the reduced parametrically driven system and the Melnikov function is subsequently established. Effects of different physical parameters on the global bifurcation are studied analytically and numerically, and different chaotic regions of the parameter space are found. The results suggest that optical intensity may help to enhance chaos while the strength of the effective three-body interaction, the velocity of the optical lattice, and the damping coefficients annihilate or reduce chaotic behavior of the steady-state traveling wave solution of the particle number density of a Bose–Einstein condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pethick, C.J., Smith, H.: Bose–Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  2. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  Google Scholar 

  3. Filho, V.S., Gammal, A., Frederico, T., Tomio, L.: Chaos in collapsing Bose-condensed gas. Phys. Rev. A 62, 033605 (2000)

    Article  Google Scholar 

  4. Sun, K., Tian, B., Wen-Jun, L., Jiang, Y., Qi-Xing, Q., Wan, P.: Soliton dynamics and interaction in the Bose–Einstein condensates with harmonic trapping potential and time varying interatomic interaction. Nonlinear Dyn. 67, 165–175 (2012)

    Article  MATH  Google Scholar 

  5. Wang, M., Tian, B., Wen-Rui, S., Lü, X., Yu-Shan, X.: Soliton and their collisions in the spinor Bose–Einstein condensates. Nonlinear Dyn. 69, 1137–1148 (2012)

    Article  MATH  Google Scholar 

  6. Raghavan, S., Smerzi, A., Fantoni, S., Shenoy, S.R.: Coherent oscillations between two weakly coupled Bose–Einstein condensate. Phys. Rev. A 59, 620–633 (1999)

    Article  Google Scholar 

  7. Hong-Wei, Y., Wei, Z.: Josephson dynamics of a Bose–Einstein. Chin. Phys. Lett. 24, 620–623 (2007)

    Article  Google Scholar 

  8. Liu, H., Yan, F., Xu, C.: The bifurcation and exact traveling wave solution of (1+2) dimensional nonlinear Schrödinger equation with dual-power law nonlinearity. Nonlinear Dyn. 67, 465–473 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Engels, P., Atherton, C., Hoefer, M.A.: Observation of Faraday waves in a Bose–Einstein condensate. Phys. Rev. Lett. 98(98), 095301 (2007)

    Article  Google Scholar 

  10. Nicolin, A.I.: Resonant wave formation in Bose–Einstein condensates. Phys. Rev. E 84(84), 056202 (2011)

    Article  Google Scholar 

  11. Balaz, A., Nicolin, A.I.: Faraday waves in binary nonmiscible Bose–Einstein condensates. Phys. Rev. A 85, 023613 (2012)

    Article  Google Scholar 

  12. Frantzeskakis, D.J.: Dark solitons in atomic Bose–Einstein condensates: from theory to experiments. J. Phys. A, Math. Theor. 43, 213001 (2010)

    Article  MathSciNet  Google Scholar 

  13. Nicolin, A.I., Jensen, M.H., Thomsen, J.W., Carretero, G.R.: Resonant energy transfer in Bose–Einstein condensates. Physica D 237, 2476–2481 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Machholm, M., Nicolin, A., Pethick, C.J., Smith, H.: Spatial period doubling in Bose–Einstein condensates in an optical lattice. Phys. Rev. A 69, 043604 (2004)

    Article  Google Scholar 

  15. Nistazakis, H.E., Porter, M.A., Kevrekidis, P.G., Frantzeskakis, D.J., Nicolin, A., Chin, J.K.: Fractional-period excitations in continuum periodic systems. Phys. Rev. A 74, 063617 (2006)

    Article  Google Scholar 

  16. Pollack, S.E., Dries, D., Hulet, R.G.: Collective excitation of a Bose–Einstein condensate by modulation of the atomic scattering length. Phys. Rev. A 81, 053627 (2010)

    Article  Google Scholar 

  17. Vidanovic, I., Balaz, A., Hamid, A.J., Axel, P.: Nonlinear Bose–Einstein-condensate dynamics induced by a harmonic modulation of the s-wave scattering length. Phys. Rev. A 84, 013618 (2011)

    Article  Google Scholar 

  18. Bing, L.X., Wen, X.X., Fei, Z.X.: Suppression of chaos in a Bose–Einstein condensate loaded into a moving optical superlattice potential. Chin. Phys. Lett. 27, 040302 (2010)

    Article  Google Scholar 

  19. Cong, F., Wang, Z., Hua, H., Pang, S., Tong, S.: Controlling chaos in the Bose–Einstein condensate. J. Exp. Theor. Phys. 114, 377–381 (2012)

    Article  Google Scholar 

  20. Peil, S., Porto, J.V., Laburthe Tolra, B., Obrecht, J.M., King, B.E., Subbotin, M., Rolston, S.L., Phillips, W.D.: Patterned loading of a Bose–Einstein condensate into an optical lattice. Phys. Rev. A 67, 051603 (2003)

    Article  Google Scholar 

  21. Abdullaev, F.Kh., Kraenkel, R.A.: Coherent atomic oscillations and resonances between coupled Bose–Einstein condensates with time-dependent trapping potential. Phys. Rev. A 62, 023613 (2000)

    Article  Google Scholar 

  22. Lee, C., Hai, W., Shi, L., Zhu, X., Gao, K.: Chaotic and frequency-locked atomic population oscillations between two coupled Bose–Einstein condensates. Phys. Rev. A 64, 053604 (2001)

    Article  Google Scholar 

  23. Eguiluz, V.M., Hernández-García, E., Piro, O., Balle, S.: Frozen spatial chaos induced by boundaries. Phys. Rev. E 60, 6571–6579 (1999)

    Article  Google Scholar 

  24. Chong, G., Hai, W., Xie, Q.: Controlling chaos in a weakly coupled array of Bose–Einstein condensates. Phys. Rev. E 71, 016202 (2005)

    Article  Google Scholar 

  25. Martin, A.D., Adams, C.S., Gardiner, S.A.: Bright matter-wave soliton collisions in a harmonic trap: regular and chaotic dynamics. Phys. Rev. Lett. 98, 020402 (2007)

    Article  Google Scholar 

  26. Chong, G., Hai, W., Xie transient, Q.: Transient and stationary chaos of a Bose–Einstein condensate loaded into a moving optical lattice potential. Phys. Rev. E 70, 036213 (2004)

    Article  Google Scholar 

  27. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shinbrot, T., Ott, E., Grebogi, C., Yorke, J.A.: Using small perturbations to control chaos. Nature 363, 411–417 (1993)

    Article  Google Scholar 

  29. Shinbrot, T., Ott, E., Grebogi, C., Yorke, J.A.: Using chaos to direct trajectories. Phys. Rev. Lett. 65, 3215–3218 (1990)

    Article  Google Scholar 

  30. Lima, R., Pettini, M.: Suppression of chaos by resonant parametric perturbations. Phys. Rev. A 41, 726–733 (1990)

    Article  MathSciNet  Google Scholar 

  31. Ramesh, M., Narayanan, S.: Chaos control by non-feedback methods in the presence of noise. Chaos Solitons Fractals 10, 1473–1489 (1990)

    Article  Google Scholar 

  32. Braiman, Y., Goldhirsch, I.: Taming chaotic dynamics with weak periodic perturbations. Phys. Rev. Lett. 20, 2545–2548 (1991)

    Article  MathSciNet  Google Scholar 

  33. Show, W., Wiggins, S.: Chaotic dynamics of a whirling pendulum. Physica D 31, 190–211 (1988)

    Article  MathSciNet  Google Scholar 

  34. Melnikov, V.K.: On the stability of the centre for time-periodic perturbations. Trans. Mosc. Math. Soc. 12, 1–57 (1963)

    Google Scholar 

  35. Holmes, P.J., Marsden, J.E.: Horseshoe and Arnold diffusion for Hamiltonian system on Lie groups. Indiana Univ. Math. J. 32, 273–309 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  36. Holmes, P.J., Marsden, J.E.: Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom. Commun. Math. Phys. 82, 523–544 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  37. Holmes, P.J., Marsden, J.E.: Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems. J. Math. Phys. 23, 669–675 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  38. Chacón, R., Bote, D., Carretero-González, R.: Controlling chaos of a Bose–Einstein condensate loaded into a moving optical Fourier-synthesized lattice. Phys. Rev. E 78, 036215 (2008)

    Article  Google Scholar 

  39. Ginzburg, V.L., Pitaevskii, L.P.: On the theory of superfluidity. Zh. Èksp. Teor. Fiz. 34, 1240–1245 (1958)

    MathSciNet  Google Scholar 

  40. Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  41. Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207 (1963)

    Article  Google Scholar 

  42. Abdullaev, F.Kh., Gammal, A., Tomio, L., Frederico, T.: Stability of trapped Bose–Einstein condensates. Phys. Rev. A 63, 043604 (2001)

    Article  Google Scholar 

  43. Gammal, A., Frederico, T., Tomio, L., Abdullaev, F.Kh.: Stability analysis of the D-dimensional nonlinear Schrödinger equation with trap and two- and three-body interactions. Phys. Lett. A 267, 305–311 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  44. Stamper-Kurn, D., Miesner, H.-J., Inouye, S., Andrews, M., Ketterle, W.: Collisionless and hydrodynamic excitations of a Bose–Einstein condensate. Phys. Rev. Lett. 81, 500–503 (1998)

    Article  Google Scholar 

  45. Marino, I., Raghavan, S., Fantoni, S., Shenoy, S.R., Smerzi, A.: Bose-condensate tunneling dynamics: momentum-shortened pendulum with damping. Phys. Rev. A 60, 487–493 (1999)

    Article  Google Scholar 

  46. Aftalion, A., Du, Q., Pomeau, Y.: Dissipative flow and vortex shedding in the Painlevé boundary layer of a Bose–Einstein condensate. Phys. Rev. Lett. 91, 090407 (2003)

    Article  Google Scholar 

  47. Tsubota, M., Kasamatsu, K., Ueda, M.: Vortex lattice formation in a rotating Bose–Einstein condensate. Phys. Rev. A 65, 023603 (2002)

    Article  Google Scholar 

  48. Kasamatsu, K., Tsubota, M., Ueda, M.: Nonlinear dynamics of vortex lattice formation in a rotating Bose–Einstein condensate. Phys. Rev. A 67, 033610 (2003)

    Article  Google Scholar 

  49. Bloch, F.: Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1928)

    Article  MATH  Google Scholar 

  50. Sun, Z., Xu, W., Yang, X., Fang, T.: Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback. Chaos Solitons Fractals 27, 705–714 (2006)

    Article  MATH  Google Scholar 

  51. Tchawoua, C., Siewe Siewe, M., Tchatchueng, S., Moukam, F.M.: Kakmeni, nonlinear dynamics of parametrically driven particles in a ϕ 6 potential. Nonlinearity 21, 1041–1055 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. Siewe Siewe, M., Moukam Kakmeni, F.M., Tchawoua, C., Woafo, P.: Bifurcation and chaos in the triple-well ϕ 6 Van der Pol oscillator driven by external and parametric excitations. Physica A 357, 383–396 (2005)

    Article  Google Scholar 

  53. Siewe Siewe, M., Yamgoué, S.B., Moukam Kakmeni, F.M., Tchawoua, C.: Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn. 62, 379–389 (2010)

    Article  MATH  Google Scholar 

  54. Chacón, R.: Comparison between parametric excitation and additional forcing terms as chaos-suppressing perturbations. Phys. Lett. A 247, 431–436 (1998)

    Article  Google Scholar 

  55. Wang, C.-N., Ma, J., Liu, Y., Huang, L.: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67, 139–146 (2012)

    Article  MATH  Google Scholar 

  56. Liu, D., Yamaura, H.: Chaos control of a ϕ 6 Van der Pol oscillator driven by external excitation. Nonlinear Dyn. 68, 95–105 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  57. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, New York (1994)

    MATH  Google Scholar 

  58. Denschlag, J.H., Simsarian, J.E., Häffner, H., McKenzie, C., Browaeys, A., Cho, D., Helmerson, K., Rolston, S.L., Phillips, W.D.: A Bose–Einstein condensate in an optical lattice. J. Phys. B 35, 3095–3110 (2002)

    Google Scholar 

  59. Chong, G., Hai, W., Xie, Q.: Spatial chaos of trapped Bose–Einstein condensate in one-dimensional weak optical lattice potential. Chaos 14, 217–223 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments. M. Siewe Siewe is indebted to the International Centre for Theoretical Physics (ICTP) for its financial support to do research work as a research visitor and also indebted to the Mathematics Group of ICTP for hosting him to undertake part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tchatchueng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchatchueng, S., Siewe Siewe, M., Moukam Kakmeni, F.M. et al. Bifurcation response and Melnikov chaos in the dynamic of a Bose–Einstein condensate loaded into a moving optical lattice. Nonlinear Dyn 75, 461–474 (2014). https://doi.org/10.1007/s11071-013-1078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1078-2

Keywords

Navigation