Skip to main content
Log in

Impact of inelastic processes on the chaotic dynamics of a Bose-Einstein condensate trapped into a moving optical lattice

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We investigate the dynamics of a Bose-Einstein condensate with attractive two-body and repulsive three-body interactions between atoms trapped into a moving optical lattice and subjected to some inelastic processes (a linear atomic feeding and two dissipative terms related to dipolar relaxation and three-body recombination). We are interested in finding out how the nonconservative terms mentioned above act on the dynamical behaviour of the condensate, and how they can be used in the control of possible chaotic dynamics. Seeking the wave function of condensate on the form of Bloch waves, we notice that the real amplitude of the condensate is governed by an integro-differential equation. As theoretical tool of prediction of homoclinic and heteroclinic chaos, we use the Melnikov method, which provides two Melnikov functions related to homoclinic and heteroclinic bifurcations. Applying the Melnikov criterion, some regions of instability are plotted in the parameter space and reveal complex dynamics (solitonic stable solutions, weak and strong instabilities leading to collapse, growth-collapse cycles and finally to chaotic oscillations). It comes from some parameter space that coupling the optical intensity and parameters related to atomic feeding and atomic losses (dissipations) as control parameters can help to reduce or annihilate chaotic behaviours of the condensate. Moreover, the theoretical study reveals that there is a certain ratio between the atomic feeding parameter and the parameters related to the dissipation for the occurrence of chaotic oscillations in the dynamics of condensate. The theoretical predictions are verified by numerical simulations (Poincaré sections), and there is a certain reliability of our analytical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Bose, Z. Phys. 26, 178 (1924)

    Article  ADS  Google Scholar 

  2. A. Einstein, S. B. Preuss. Akad. Wiss 22, 261 (1924)

    Google Scholar 

  3. P. Kapitza, Nature 141, 74 (1938)

    Article  ADS  Google Scholar 

  4. J.F. Allen, A.D. Misener, Nature 141, 75 (1938)

    Article  ADS  Google Scholar 

  5. F. London, Phys. Rev. 54, 947 (1938)

    Article  ADS  Google Scholar 

  6. Eric Cornell, J. Res. Natl. Instr. Stand. Technol. 101, 419 (1996)

    Article  Google Scholar 

  7. M.H. Anderson, J.R. Enscher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  8. Biao Wu, Qian Niu, Phys. Rev. A 64, 061603 (2001)

    Article  ADS  Google Scholar 

  9. Oliver Morsch, Markus Oberthaler, Rev. Mod. Phys. 78, 179 (2006)

    Article  ADS  Google Scholar 

  10. Jongchul Mun, Patrick Medley, Gretchen K. Campbell, Luis G. Marcassa, David E. Pritchard, Wolfgang Ketterle, Phys. Rev. Lett. 99, 150604 (2007)

    Article  Google Scholar 

  11. Zheng-Wei Xie, Weiping Zhang, S.T. Chui, W.M. Liu, Phys. Rev. A 69, 053609 (2004)

    Article  ADS  Google Scholar 

  12. L. Tomio, V.S. Filho, A. Gammal, T. Frederico, Laser Physics 13, 582 (2003)

    Google Scholar 

  13. Victo S. Filho, Lauro Tomio, A. Gammal, T. Frederico, Phys. Lett. A 325, 420 (2004)

    Article  ADS  Google Scholar 

  14. Victo S. Filho, T. Frederico, Arnaldo Gammal, Lauro Tomio, Phys. Rev. E 66, 036225 (2002)

    Article  ADS  Google Scholar 

  15. Victo S. Filho, F.Kh. Abdullaev, A. Gammal, Lauro Tomio, Phys. Rev. A 63, 053603 (2001)

    Article  ADS  Google Scholar 

  16. S. Tchatchueng, M. Siewe Siewe, F.M. Moukam Kakmeni, C. Tchawoua, Nonlinear Dyn. 75, 461 (2014)

    Article  Google Scholar 

  17. A. Gammal, T. Frederico, Lauro Tomio, Ph. Chomaz, J. Phys. B: At. Mol. Opt. Phys. 33, 4053 (2000)

    Article  ADS  Google Scholar 

  18. D.S. Petrov, Phys. Rev. Lett. 112, 103201 (2014)

    Article  ADS  Google Scholar 

  19. A.E. Leanhardt, A.P. Chikkatur, D. Kielpinski, Y. Shin, T.L. Gustavson, W. Ketterle, D.E. Pritchard, Phys. Rev. Lett. 89, 040401 (2002)

    Article  ADS  Google Scholar 

  20. Peng Ping, Li Guan-Qiang, Chin. Phys. B 18, 3221 (2009)

    Article  ADS  Google Scholar 

  21. Emmanuel Kengne, Ahmed Lakhssassi, Eur. Phys. J. Plus 130, 197 (2015)

    Article  Google Scholar 

  22. J. Söding, D. Guéry-Odelin, P. Desbiolles, F. Chevy, H. Inamori, J. Dalibard, Appl. Phys. B 69, 257 (1999)

    Article  ADS  Google Scholar 

  23. F. Bloch, Z. Phys. 52, 555 (1928)

    Article  ADS  Google Scholar 

  24. Immanuel Bloch, Nat. Phys. 1, 23 (2005)

    Article  Google Scholar 

  25. R. Chacón, D. Bote, R. Carretero-González, Phys. Rev. E 78, 036215 (2008)

    Article  ADS  Google Scholar 

  26. J.L. Roberts, N.R. Claussen, S.L. Cornish, E.A. Donley, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 86, 4211 (2001)

    Article  ADS  Google Scholar 

  27. E.A. Donley, N.R. Claussen, S.L. Cornish, J.L. Roberts, E.A. Cornell, C.E. Wieman, Nat. London 412, 295 (2001)

    Article  ADS  Google Scholar 

  28. N.R. Claussen, E.A. Donley, S.T. Thomspson, C.E. Wieman, Phys. Rev. Lett. 89, 010401 (2002)

    Article  ADS  Google Scholar 

  29. V.K. Melnikov, Trans. Moscow Math. Soc. 12, 1 (1963)

    Google Scholar 

  30. S. Wiggins, Global Bifurcations and Chaos Analytical Methods (Springer-Verlag, New York, Heidelberg, Berlin, 1988)

  31. S. Wiggins, J. Appl. Math. 48, 262 (1988)

    Google Scholar 

  32. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer-Verlag, New York, Heidelberg, Berlin, 1990)

  33. S. Wiggins, Physica D 40, 471 (1990)

    Article  ADS  Google Scholar 

  34. W. Show, S. Wiggins, Physica D 31, 190 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  35. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvin Tchatchueng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchatchueng, S., Siewe Siewe, M., Marie Moukam Kakmeni, F. et al. Impact of inelastic processes on the chaotic dynamics of a Bose-Einstein condensate trapped into a moving optical lattice. Eur. Phys. J. Plus 132, 117 (2017). https://doi.org/10.1140/epjp/i2017-11368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11368-1

Navigation