Skip to main content

Advertisement

Log in

Periodic and quasiperiodic galloping of a wind-excited tower under external excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The galloping of tall structures excited by steady and unsteady wind may be periodic or quasiperiodic (QP) with amplitudes having the same order of magnitude. While the onset of periodic and QP galloping was studied, their control on the other hand has received less attention. In this paper, we conduct analytical study on the effect of a fast harmonic excitation on the onset of periodic and QP galloping in the presence of steady and unsteady wind. We consider the cases where the unsteady wind activates either external excitation, parametric one or both. A perturbation analysis is performed to obtain close expressions of QP solution and the corresponding modulation envelopes. We show that at various loading situations, the periodic and QP galloping onset is significantly influenced by the amplitude of the fast external excitation. In the case where the unsteady wind activates parametric excitation, the QP galloping occurs with higher frequency modulation compared to the case where the unsteady wind activates external excitation. In the case where external and parametric excitations are activated simultaneously, fast harmonic excitation eliminates bistability in the amplitude response and gives rise to a new small QP modulation envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 15
Fig. 14
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Parkinson, G.V., Smith, J.D.: The square prism as an aeroelastic non-linear oscillator. Q. J. Mech. Appl. Math. 17, 225–239 (1964)

    Article  MATH  Google Scholar 

  2. Novak, M.: Aeroelastic galloping of prismatic bodies. J. Eng. Mech. Div. 96, 115–142 (1969)

    Google Scholar 

  3. Nayfeh, A.H., Abdel-Rohman, M.: Galloping of squared cantilever beams by the method of multiple scales. J. Sound Vib. 143, 87–93 (1990)

    Google Scholar 

  4. Abdel-Rohman, M.: Effect of unsteady wind flow on galloping of tall prismatic structures. Nonlinear Dyn. 26, 231–252 (2001)

    Article  Google Scholar 

  5. Clark, R., Modern, A.: Course in Aeroelasticity, 4th edn. Kluwer Academic, Dordrecht (2004)

    MATH  Google Scholar 

  6. Spencer, B.F. Jr., Nagarajaiah, S.: State of the art of structural control. J. Struct. Eng. 129, 845–865 (2003)

    Article  Google Scholar 

  7. Luongo, A., Zulli, D.: Parametric, external and self-excitation of a tower under turbulent wind flow. J. Sound Vib. 330, 3057–3069 (2011)

    Article  Google Scholar 

  8. Tondl, A.: On the interaction between self-excited and parametric vibrations. National Research Institute for Machine Design, Monographs and Memoranda No. 25, Prague (1978)

  9. Schmidt, G.: Interaction of self-excited forced and parametrically excited vibrations. In: The 9th International Conference on Nonlinear Oscillations. Application of the Theory of Nonlinear Oscillations, vol. 3. Naukowa Dumka, Kiev (1984)

    Google Scholar 

  10. Szabelski, K., Warminski, J.: Self excited system vibrations with parametric and external excitations. J. Sound Vib. 187(4), 595–607 (1995)

    Article  Google Scholar 

  11. Belhaq, M., Fahsi, A.: Higher-order approximation of subharmonics close to strong resonances in the forced oscillators. Comput. Math. Appl. 33(8), 133–144 (1997)

    Article  MathSciNet  Google Scholar 

  12. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  13. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  14. Belhaq, M., Fahsi, A.: Analytics of heteroclinic bifurcation in a 3:1 subharmonic resonance. Nonlinear Dyn. 62, 1001–1008 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fahsi, A., Belhaq, M.: Analytical approximation of heteroclinic bifurcation in a 1:4 resonance. Int. J. Bifurc. Chaos Appl. Sci. Eng. 22, 1250294 (2012)

    Article  MathSciNet  Google Scholar 

  16. Qu, W.L., Chen, Z.H., Xu, Y.L.: Dynamic analysis of a wind-excited stress tower with friction dampers. Comput. Struct. 79, 2817–2831 (2001)

    Article  Google Scholar 

  17. Kirrou, I., Mokni, L., Belhaq, M.: On the quasiperiodic galloping of a wind-excited tower. J. Sound Vib. 32, 4059–4066 (2013)

    Article  Google Scholar 

  18. Belhaq, M., Fahsi, A.: Hysteresis suppression for primary and subharmonic 3:1 resonances using fast excitation. Nonlinear Dyn. 57, 275–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hamdi, M., Belhaq, M.: Quasi-periodic oscillation envelopes and frequency locking in rapidly vibrated nonlinear systems with time delay. Nonlinear Dyn. 73, 1–15 (2013)

    Article  MathSciNet  Google Scholar 

  20. Blekhman, I.I.: Vibrational Mechanics—Nonlinear Dynamic Effects, General Approach, Application. World Scientific, Singapore (2000)

    Book  Google Scholar 

  21. Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer, Berlin (2003)

    Book  Google Scholar 

  22. Lakrad, F., Belhaq, M.: Suppression of pull-in instability in MEMS using a high-frequency actuation. Commun. Nonlinear Sci. Numer. Simul. 15, 3640–3646 (2010)

    Article  Google Scholar 

  23. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  24. Zulli, D., Luongo, A.: Bifurcation and stability of a two-tower system under wind-induced parametric, external and self-excitation. J. Sound Vib. 331, 365–383 (2012)

    Article  Google Scholar 

  25. Keightley, W.O., Housner, G.W., Hudson, D.E.: Vibration tests of the Encino dam intake tower. California Institute of Technology, Report No. 2163, Pasadena, California (1961)

  26. Belhaq, M., Houssni, M.: Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations. Nonlinear Dyn. 18, 1–24 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rand, R.H., Guennoun, K., Belhaq, M.: 2:2:1 resonance in the quasi-periodic Mathieu equation. Nonlinear Dyn. 31, 187–193 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Belhaq.

Appendices

Appendix A

The expressions of the coefficients of Eq. (1) are

$$\begin{aligned}[c] &\omega=\pi\frac{\sqrt{3EI}}{h \ell \sqrt{m}},\qquad c_{a}=\frac{\rho A_{1}bh \ell \bar{U}_{c}}{2\pi\sqrt{3EIm}},\\ &b_{1}=c_{a},\qquad b_{2}=-\frac{4\rho A_{2}b\ell}{3\pi m},\\ &b_{31}=-\frac{3\pi\rho A_{3}b\ell\sqrt{3EI}}{8h\bar{U}_{c}\sqrt{m^{3}}} \end{aligned} $$
$$\begin{aligned}[c] &b_{32}=-b_{31},\qquad\eta_{1}=\frac{4\rho A_{0}bh^2\ell\bar{U}_{c}^{2}}{3\pi^{3}EI},\\ &\eta_{2}=\frac{\eta_{1}}{2},\qquad U(t)=\bar{U}+u(t), \end{aligned} $$

where is the height of the tower, b is the cross-section wide, EI the total stiffness of the single story, m is the mass longitudinal density, h is the interstory height, and ρ is the air mass density. A i ,i=0,…,3 are the aerodynamic coefficients for the squared cross-section. The dimensional critical velocity is given by

$$ \bar{U}_{c}=\frac{4\pi\xi\sqrt{3EIm}}{\rho bA_{1}h\ell} $$
(24)

Here, ξ is the modal damping ratio, depending on both the external and internal damping

$$ \xi=\frac{\eta h^{2}}{24EI}\omega+\frac{c}{2m\omega} $$
(25)

The following numerical values picked from [7] are used for convenience: the height of the tower is =36 m, the cross-section is b=16 m wide, the total stiffness of the single story is EI=115318000 N m2, the mass longitudinal density is m=4737 kg/m, the damping ratio is ζ=0.5 percent (corresponding to η=128513 N s, c=34.8675 N s/m2 in Eq. (25)). The interstory height is assumed h=4m. The aerodynamic coefficients A i ,i=0,…,3 are taken from [4] for the squared cross-section: A 0=0.0297, A 1=0.9298, A 2=−0.2400, A 3=−7.6770. The air mass density is ρ=1.25 kg/m3. The (dimensional) natural frequency of the rod is ω=5.89 rad/s. The (dimensional) critical wind velocity assumes the value \(\overline{U}_{c}=30~\mbox{m/s}\).

Appendix B

Introducing \(D_{i}^{j}\equiv\frac{\partial^{j}}{\partial ^{j}T_{i}}\) yields \(\frac{d}{dt}=\nu D_{0}+ D_{1}\), \(\frac{d^{2}}{dt^{2}}=\nu^{2} D_{0}^{2}+ 2\nu D_{0}D_{1}+D_{1}^{2}\) and substituting Eq. (2) into Eq. (1) gives

$$\begin{aligned} &{\mu^{-1}D_{0}^{2}\phi+D_{1}^{2}z+2D_{0}D_{1} \phi+\mu D_{1}^{2}\phi} \\ &{\qquad{}+ \bigl(c_{a}(1- \bar{U})-b_{1}u(t) \bigr) (D_{1}z+ D_{0}\phi+\mu D_{1}\phi )} \\ &{\qquad{}+z+\mu\phi +b_{2} \bigl((D_{1}z)^2+2D_{1}z(D_{0} \phi+\mu D_{1}\phi)} \\ &{\qquad{}+(D_{0}\phi)^2+2\mu D_{0}\phi D_{1}\phi+(\mu D_{1}\phi)^2 \bigr)} \\ &{\qquad{}+ \biggl(\frac{b_{31}}{\bar{U}}+\frac {b_{32}}{\bar{U}^2}u(t) \biggr) \bigl((D_{1}z)^3 +3(D_{1}z)^2} \\ &{\qquad{}\times (D_{0} \phi+\mu D_{1}\phi)+ 3(D_{1}z) (D_{0}\phi+\mu D_{1}\phi)^2} \\ &{\qquad{}+(D_{0}\phi+\mu D_{1}\phi)^3 \bigr)} \\ &{\quad{}=\eta_{1}\bar{U}u(t)+ \eta_{2} \bar{U}^2+Y\cos(\nu t)} \end{aligned}$$
(26)

Averaging (26) leads to

$$\begin{aligned} &{D_{1}^{2}z+ \bigl(c_{a}(1- \bar{U})-b_{1}u(t) \bigr)D_{1}z+z} \\ &{\qquad{}+b_{2} \bigl((D_{1}z)^2+ \bigl\langle(D_{0} \phi)^2\bigr\rangle+\bigl\langle (2\mu D_{0}\phi D_{1}\phi)\bigr\rangle} \\ &{\qquad{}+\bigl\langle(\mu D_{1}\phi)^2\bigr \rangle \bigr)+ \biggl(\frac{b_{31}}{\bar{U}} +\frac{b_{32}}{\bar{U}^2}u(t) \biggr) \bigl((D_{1}z)^3} \\ &{\qquad{}+ 3D_{1}z\bigl(\bigl \langle(D_{0}\phi)^2\bigr\rangle+\bigl\langle(2\mu D_{0}\phi D_{1}\phi)\bigr\rangle} \\ &{\qquad{}+\bigl\langle(\mu D_{1}\phi)^2\bigr \rangle\bigr) \bigr)} \\ &{\quad{}=\eta_{1}\bar{U}u(t)+\eta_{2} \bar{U}^2} \end{aligned}$$
(27)

Subtracting (27) from (26) yields

$$\begin{aligned} &{\mu^{-1}D_{0}^{2}\phi+2D_{0}D_{1} \phi+\mu D_{1}^{2}\phi} \\ &{\qquad{}+ \bigl(c_{a}(1- \bar{U})-b_{1}u(t) \bigr) (D_{0}\phi+ \mu D_{1}\phi )} \\ &{\qquad{}+\mu\phi+b_{2} \bigl(2D_{1}z(D_{0}\phi +\mu D_{1}\phi)+(D_{0}\phi)^2} \\ &{\qquad{}- \bigl\langle (D_{0}\phi)^2\bigr\rangle+2\mu D_{0} \phi D_{1}\phi+(\mu D_{1}\phi)^2} \\ &{\qquad{}- \bigl\langle ( \mu D_{1}\phi)^2\bigr\rangle \bigr)+ \biggl( \frac{b_{31}}{\bar{U}} +\frac{b_{32}}{\bar{U}^2}u(t) \biggr)} \\ &{\qquad{}\times \bigl(3(D_{1}z)^2(D_{0}+ \mu D_{1}\phi)+3D_{1}z(D_{0}\phi)^2} \\ &{\qquad{}-3D_{1}z \bigl\langle (D_{0}\phi)^2\bigr\rangle+6D_{1}z\mu (D_{0}\phi D_{1}\phi)} \\ &{\qquad{}+3D_{1}z(\mu D_{1}\phi)^2-3D_{1}z \bigl\langle (\mu D_{1}\phi)^2\bigr\rangle+(D_{0} \phi)^3} \\ &{\qquad{}+3\mu (D_{0}\phi)^2D_{1}\phi} \\ &{\qquad{}+3D_{0}\phi(\mu D_{1}\phi)^2+ \mu D_{1}\phi \bigr)} \\ &{\quad{}=Y\cos(T_{0})} \end{aligned}$$
(28)

Using the inertial approximation [20], i.e., all terms in the left-hand side of Eq. (28), except the first, are ignored, one obtains

$$ \phi=-\mu Y\cos(T_{0}) $$
(29)

Inserting ϕ into Eq. (27), using that 〈cos2 T 0〉=1/2, and keeping only terms of orders three in z, give the equation governing the slow dynamic of the motion (3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belhaq, M., Kirrou, I. & Mokni, L. Periodic and quasiperiodic galloping of a wind-excited tower under external excitation. Nonlinear Dyn 74, 849–867 (2013). https://doi.org/10.1007/s11071-013-1010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1010-9

Keywords

Navigation