Skip to main content
Log in

Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Thermal post-buckled vibration of laminated composite doubly curved panel embedded with shape memory alloy (SMA) fiber is investigated and presented in this article. The geometry matrix and the nonlinear stiffness matrices are derived using Green–Lagrange type nonlinear kinematics in the framework of higher order shear deformation theory. In addition to that, material nonlinearity in shape memory alloy due to thermal load is incorporated by the marching technique. The developed mathematical model is discretized using a nonlinear finite element model and the sets of nonlinear governing equations are obtained using Hamilton’s principle. The equations are solved using the direct iterative method. The effect of nonlinearity both in geometric and material have been studied using the developed model and compared with those published literature. Effect of various geometric parameters such as thickness ratio, amplitude ratio, lamination scheme, support condition, prestrains of SMA, and volume fractions of SMA on the nonlinear free vibration behavior of thermally post-buckled composite flat/curved panel been studied in detail and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim, K.D.: Buckling behavior of composite panels using the finite element method. Compos. Struct. 36(2), 33–43 (1996)

    Article  Google Scholar 

  2. Lee, J.: Thermally induced buckling of laminated composites by a layer wise theory. Comput. Struct. 65(6), 917–922 (1997)

    Article  MATH  Google Scholar 

  3. Matsunaga, H.: Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Compos. Struct. 68(4), 439–454 (2005)

    Article  Google Scholar 

  4. Matsunaga, H.: Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Compos. Struct. 72(2), 177–192 (2006)

    Article  Google Scholar 

  5. Matsunaga, H.: Thermal buckling of cross-ply laminated composite shallow shells according to a global higher-order deformation theory. Compos. Struct. 81(2), 210–221 (2007)

    Article  MathSciNet  Google Scholar 

  6. Shen, H.S.: Thermal post-buckling analysis of imperfect laminated plates using a higher-order shear deformation theory. Int. J. Non-Linear Mech. 32(6), 1035–1050 (1997)

    Article  MATH  Google Scholar 

  7. Shen, H.S.: Thermal post-buckling behavior of imperfect shear deformable laminated plates with temperature dependent properties. Comput. Methods Appl. Mech. Eng. 190(40–41), 5377–5390 (2001)

    Article  MATH  Google Scholar 

  8. Ganapathi, M., Touratier, M.: A study on thermal post-buckling behavior of laminated composite plates using a shear-flexible finite element. Finite Elem. Anal. Des. 28(2), 115–135 (1997)

    Article  MATH  Google Scholar 

  9. Nath, Y., Shukla, K.K.: Post-buckling of angle-ply laminated plates under thermal loading. Commun. Nonlinear Sci. Numer. Simul. 6(1), 1–16 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Thankam, V.S., Singh, G., Rao, G.V., Rath, A.K.: Thermal post-buckling behavior of laminated plates using a shear flexible element based on coupled-displacement field. Compos. Struct. 59(3), 351–359 (2003)

    Article  Google Scholar 

  11. Girish, J., Ramachandra, L.S.: Thermomechanical post-buckling analysis of symmetric and antisymmetric composite plates with imperfection. Compos. Struct. 67(4), 453–460 (2005)

    Article  Google Scholar 

  12. Davis, B.A.: Investigation of thermomecanical response of shape memory alloy hybrid composite beams. NASA Langley Research Center, Hampton, VA 23681-2199 (NASA/CR-213929) (2005)

  13. Lee, H.J., Lee, J.J., Huh, J.S.: A simulation study on the thermal buckling behavior of laminated composite shells with embedded shape memory alloy (SMA) wires. Compos. Struct. 47(1–4), 463–469 (1999)

    Article  Google Scholar 

  14. Tawfik, M., Ro, J.J., Mei, C.: Thermal post-buckling and aero elastic behavior of SMA reinforced plates. Smart Mater. Struct. 11(2), 297–307 (2002)

    Article  Google Scholar 

  15. Roh, J.H., Oh, I.K., Yang, S.M., Han, J.H., Lee, I.: Thermally post-buckling analysis of shape memory alloy hybrid composite shell panels. Smart Mater. Struct. 13(6), 1334–1337 (2004)

    Article  Google Scholar 

  16. Kumar, S.K., Singh, B.N.: Thermal buckling analysis of SMA fibre reinforced composite plates using layer wise model. J. Aerosp. Eng. 22(4), 342–353 (2009)

    Article  Google Scholar 

  17. Naveen, K.C., Singh, B.N.: Thermal buckling and post-buckling of laminated composite plates with SMA fibers using layerwise theory. Int. J. Comput. Methods Eng. Sci. Mech. 10(6), 423–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Panda, S.K., Singh, B.N.: Thermal post-buckling analysis of laminated composite shell panel embedded with shape memory alloy fibres using nonlinear finite element analysis. Proc. IMechE, Part C, J. Mech. Eng. Sci. 224(4), 757–769 (2009)

    Article  Google Scholar 

  19. Lee, D.M., Lee, I.: Vibration behaviours of thermally post-buckled anisotropic plates using first order shear deformable plate theory. Comput. Struct. 63(3), 371–378 (1997)

    Article  MATH  Google Scholar 

  20. Girish, J., Ramachandra, L.S.: Thermal post-buckled vibration of symmetrically laminated composite plates with initial geometric imperfections. J. Sound Vib. 282(3–5), 1137–1153 (2005)

    Article  Google Scholar 

  21. Girish, J., Ramachandra, L.S.: Nonlinear static response and free vibration analysis of doubly curved cross ply panels. J. Aerosp. Eng. 20(1), 45–52 (2007)

    Article  Google Scholar 

  22. Nayfeh, A.H., Emam, S.A.: Exact solution and stability of postbuckling configurations of beams. Nonlinear Dyn. 54, 395–408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Park, J.S., Kim, J.H.: Thermal post buckling and vibration analyses of functionally graded plates. J. Sound Vib. 289, 77–93 (2006)

    Article  MATH  Google Scholar 

  24. Li, S.R., Batra, R.C., Ma, L.S.: Vibration of thermally post-buckled orthotropic circular plates. J. Therm. Stresses 30(1), 43–57 (2007)

    Article  Google Scholar 

  25. Roh, J.H., Woo, J.H., Lee, I.: Thermal post-buckling and vibration analysis of composite conical shell structures using layer wise theory. J. Therm. Stresses 32(1–2), 41–64 (2009)

    Google Scholar 

  26. Park, J.S., Kim, J.H., Moon, S.H.: Vibration of thermally post-buckled composite plates embedded with SMA fibres. Compos. Struct. 63(2), 179–188 (2004)

    Article  Google Scholar 

  27. Park, J.S., Kim, J.H., Moon, S.H.: Thermal post-buckling and flutter characteristics of composite plates embedded with shape memory alloy fibres. Composites, Part B, Eng. 36(8), 627–636 (2005)

    Article  Google Scholar 

  28. Li, S.R., Yu, W.S., Batra, R.C.: Free vibration of thermally pre/post- buckled circular thin plates embedded with shape memory alloy fibres. J. Therm. Stresses 33(2), 79–96 (2010)

    Article  Google Scholar 

  29. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  30. Cook, R.D., Malkus, D.S., Plesha, M.E.: Concepts and Applications of Finite Element Analysis, 3rd edn. Willey, Singapore (2000)

    Google Scholar 

  31. Sundaramoorthy, R., David, W., Murray, M.: Incremental finite element matrices. J. Struct. Div. 99(ST12), 2423–2438 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Appendix

Appendix

The individual nonlinear strain terms in Eq. (4) are given below:

$$\begin{aligned} &\bigl( \varepsilon _{1}^{4} \bigr) = \bigl[ ( u_{,\xi _{1}} )^{2} + ( v_{,\xi _{1}} )^{2} + ( w_{,\xi _{1}} )^{2} \bigr] \\ &\bigl( \varepsilon _{2}^{4} \bigr) = \bigl[ ( u_{,\xi _{2}} )^{2} + ( v_{,\xi _{2}} )^{2} + ( w_{,\xi _{2}} )^{2} \bigr] \\ & \bigl( \varepsilon _{6}^{4} \bigr) = 2 [ u_{,\xi _{1}}u_{,\xi _{2}} + v_{,\xi _{1}}v_{,\xi _{2}} + w_{,\xi _{1}}w_{,\xi _{2}} ] \\ & \bigl( \varepsilon _{5}^{4} \bigr) = 2 [ \phi _{1}u_{,\xi _{1}} + \phi _{2}v_{,\xi _{1}} ] \\ & \bigl( \varepsilon _{4}^{4} \bigr) = 2 [ \phi _{1}u_{,\xi _{2}} + \phi _{2}v_{,\xi _{2}} ] \\ & \bigl( k_{1}^{5} \bigr) = 2 \biggl[ \phi _{1,\xi _{1}}u_{,\xi _{1}} + \phi _{2,\xi _{1}}v_{,\xi _{1}} - \frac{\phi _{1}}{R_{1}}w_{,\xi _{1}} \biggr] \\ &\bigl( k_{2}^{5} \bigr) = 2 \biggl[ \phi _{1,\xi _{2}}u_{,\xi _{2}} + \phi _{2,\xi _{2}}v_{,\xi _{2}} - \frac{\phi _{2}}{R_{2}}w_{,\xi _{2}} \biggr] \\ & \begin{aligned}[t] \bigl( k_{6}^{5} \bigr) &= 2 \biggl[ \phi _{1,\xi _{2}}u_{,\xi _{1}} + \phi _{1,\xi _{1}}u_{,\xi _{2}} + 2\phi _{2,\xi _{1}}v_{,\xi _{2}} + \phi _{2,\xi _{2}}v_{,\xi _{1}}\\ &\quad - \frac{\phi _{2}}{R_{2}}w_{,\xi _{1}} - \frac{\phi _{1}}{R_{1}}w_{,\xi _{2}} \biggr] \end{aligned} \\ &\bigl( k_{5}^{5} \bigr) = 2 [ \phi _{1}\phi _{1,\xi _{1}} + 2\psi _{1}u_{,\xi _{1}} + \phi _{2}\phi _{2,\xi _{1}} + 2\psi _{2}v_{,\xi _{1}} ] \\ & \bigl( k_{4}^{5} \bigr) = 2 [ \phi _{1}\phi _{1,\xi _{2}} + 2\psi _{1}u_{,\xi _{2}} + \phi _{2}\phi _{2,\xi _{2}} + 2\psi _{2}v_{,\xi _{2}} ] \\ & \begin{aligned}[t] \bigl( k_{1}^{6} \bigr) &= \biggl[ \phi _{1,\xi _{1}}^{2} + \phi _{2,\xi _{1}}^{2} + 2\psi _{1,\xi _{1}}u_{,\xi _{1}} + 2 \psi _{2,\xi _{1}}v_{,\xi _{1}} \\ &\quad + \frac{\phi _{1}^{2}}{R_{1}^{2}} - \frac{\psi _{1}}{R_{1}}w_{,\xi _{1}} \biggr] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{2}^{6} \bigr) &= \biggl[ \phi _{1,\xi _{2}}^{2} + \phi _{2,\xi _{2}}^{2} + 2\psi _{1,\xi _{2}}u_{,\xi _{2}} + 2\psi _{2,\xi _{2}}v_{,\xi _{2}} \\ &\quad + \frac{\phi _{2}^{2}}{R_{2}^{2}} - 2\frac{\psi _{2}}{R_{2}}w_{,\xi _{2}} \biggr] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{6}^{6} \bigr) &= 2 \biggl[ \phi _{1,\xi _{1}}\phi _{1,\xi _{2}} + \phi _{2,\xi _{1}}\phi _{2,\xi _{2}} + \psi _{1,\xi _{1}}u_{,\xi _{2}} \\ &\quad + \psi _{1,\xi _{2}}u_{,\xi _{1}} + \psi _{2,\xi _{1}}v_{,\xi _{2}} + \psi _{2,\xi _{2}}v_{,\xi _{1}}\\ &\quad - \frac{\psi _{1}}{R_{1}}w_{,\xi _{2}} - \frac{\psi _{2}}{R_{2}}w_{,\xi _{1}} + \frac{\phi _{1}}{R_{1}}\frac{\phi _{2}}{R_{2}} \biggr] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{5}^{6} \bigr) &= 2 [ \phi _{1}\psi _{1,\xi _{1}} + \phi _{2}\psi _{2,\xi _{1}} + 2\psi _{1} \phi _{1,\xi _{1}} + 2\psi _{2}\phi _{2,\xi _{1}} \\ &\quad + 3\theta _{1}u_{,\xi _{1}} + 3\theta _{2}v_{,\xi _{1}} ] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{4}^{6} \bigr) &= 2 [ \phi _{1}\psi _{1,\xi _{2}} + \phi _{2}\psi _{2,\xi _{2}} + 2\psi _{1} \phi _{1,\xi _{2}} + 2\psi _{2}\phi _{2,\xi _{2}} \\ &\quad + 3\theta _{1}u_{,\xi _{2}} + 3\theta _{2}v_{,\xi _{2}} ] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{1}^{7} \bigr)& = 2 \biggl[ u_{,\xi _{1}}\theta _{1,\xi _{1}} + v_{,\xi _{1}}\theta _{2,\xi _{1}} + \phi _{1,\xi _{1}} \psi _{1,\xi _{1}} \\ &\quad + \phi _{2,\xi _{1}}\psi _{2,\xi _{1}} - \frac{\theta _{1}}{R_{1}}w_{,\xi _{1}} + \frac{\phi _{1}}{R_{1}}\frac{\psi _{1}}{R_{1}} \biggr] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{2}^{7} \bigr) &= 2 \biggl[ u_{,\xi _{2}}\theta _{1,\xi _{2}} + v_{,\xi _{2}}\theta _{2,\xi _{2}} + \phi _{1,\xi _{2}} \psi _{1,\xi _{2}} \\ &\quad + \phi _{2,\xi _{2}}\psi _{2,\xi _{2}} - \frac{\theta _{2}}{R_{2}}w_{,\xi _{2}} + \frac{\phi _{2}}{R_{2}}\frac{\psi _{2}}{R_{2}} \biggr] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{6}^{7} \bigr) &= 2\biggl[ u_{,\xi _{1}}\theta _{1,\xi _{2}} + u_{,\xi _{2}}\theta _{1,\xi _{1}} + v_{,\xi _{1}}\theta _{2,\xi _{2}} + v_{,\xi _{2}}\theta _{2,\xi _{1}} \\ &\quad + \phi _{1,\xi _{1}}\psi _{1,\xi _{2}} + \phi _{1,\xi _{2}}\psi _{1,\xi _{1}} + \phi _{2,\xi _{1}}\psi _{2,\xi _{2}} \\ &\quad + \phi _{2,\xi _{2}}\psi _{2,\xi _{1}} - \frac{\theta _{1}}{R_{1}}w_{,\xi _{2}} - \frac{\theta _{2}}{R_{2}}w_{,\xi _{1}} + \frac{\psi _{1}}{R_{1}}\frac{\phi _{2}}{R_{2}}\\ &\quad + \frac{\psi _{2}}{R_{2}}\frac{\phi _{1}}{R_{1}} \biggr] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{5}^{7} \bigr) &= 2 [ \phi _{1}\theta _{1,\xi _{1}} + \phi _{2}\theta _{2,\xi _{1}} + 2\psi _{1}\psi _{1,\xi _{1}} + 2\psi _{2}\psi _{2,\xi _{1}} \\ &\quad + 3 \theta _{1}\phi _{1,\xi _{1}} + 3\theta _{2}\phi _{2,\xi _{1}} ] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{4}^{7} \bigr) &= 2 [ \phi _{1}\theta _{1,\xi _{2}} + \phi _{2}\theta _{2,\xi _{2}} + 2\psi _{1}\psi _{1,\xi _{2}} + 2\psi _{2}\psi _{2,\xi _{2}} \\ &\quad + 3 \theta _{1}\phi _{1,\xi _{2}} + 3\theta _{2}\phi _{2,\xi _{2}} ] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{1}^{8} \bigr)& = \biggl[ \psi _{1,\xi _{1}}^{2} + \psi _{2,\xi _{1}}^{2} + 2\phi _{1,\xi _{1}}\theta _{1,\xi _{1}} + 2\phi _{2,\xi _{1}}\theta _{2,\xi _{1}} \\ &\quad + \frac{\psi _{1}^{2}}{R_{1}^{2}} + 2\frac{\phi _{1}}{R_{1}}\frac{\theta _{1}}{R_{1}} \biggr] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{2}^{8} \bigr) &= \biggl[ \psi _{1,\xi _{2}}^{2} + \psi _{2,\xi _{2}}^{2} + 2\phi _{1,\xi _{2}}\theta _{1,\xi _{2}} + 2\phi _{2,\xi _{2}}\theta _{2,\xi _{2}} \\ &\quad + \frac{\psi _{2}^{2}}{R_{2}^{2}} + 2\frac{\phi _{2}}{R_{2}}\frac{\theta _{2}}{R_{2}} \biggr] \end{aligned} \\ & \begin{aligned}[t] \bigl( k_{6}^{8} \bigr) &= \biggl[ \psi _{1,\xi _{1}}\psi _{1,\xi _{2}} + \psi _{2,\xi _{1}}\psi _{2,\xi _{2}} + 2\theta _{1,\xi _{1}}\phi _{1,\xi _{2}} \\ &\quad + 2\theta _{2,\xi _{1}}\phi _{2,\xi _{2}} + 2\theta _{1,\xi _{2}}\phi _{1,\xi _{1}} + 2\theta _{2,\xi _{2}}\phi _{2,\xi _{1}} \\ &\quad + 2\frac{\psi _{1}}{R_{1}}\frac{\psi _{2}}{R_{2}} + 2\frac{\phi _{1}}{R_{1}} \frac{\theta _{2}}{R_{2}} + 2\frac{\phi _{2}}{R_{2}}\frac{\theta _{1}}{R_{1}} \biggr] \end{aligned} \\ & \bigl( k_{5}^{8} \bigr) = 2 [ 2\psi _{1}\theta _{1,\xi _{1}} + 2\psi _{2}\theta _{2,\xi _{1}} + 3\theta _{1}\psi _{1,\xi _{1}} + 3\theta _{2}\psi _{2,\xi _{1}} ] \\ & \bigl( k_{4}^{8} \bigr) = 2 [ 2\psi _{1} \theta _{1,\xi _{2}} + 2\psi _{2}\theta _{2,\xi _{2}} + 3\theta _{1}\psi _{1,\xi _{2}} + 3\theta _{2}\psi _{2,\xi _{2}} ] \\ &\bigl( k_{1}^{9} \bigr) = 2 \biggl[ \psi _{1,\xi _{1}} \theta _{1,\xi _{1}} + \psi _{2,\xi _{1}}\theta _{2,\xi _{1}} + \frac{\psi _{1}}{R_{1}}\frac{\theta _{1}}{R_{1}} \biggr] \\ & \bigl( k_{2}^{9} \bigr) = 2 \biggl[ \psi _{1,\xi _{2}}\theta _{1,\xi _{2}} + \psi _{2,\xi _{2}}\theta _{2,\xi _{2}} + \frac{\psi _{2}}{R_{2}}\frac{\theta _{2}}{R_{2}} \biggr] \\ & \begin{aligned}[t] \bigl( k_{6}^{9} \bigr) &= 2 \biggl[ \psi _{1,\xi _{1}} \theta _{1,\xi _{2}} + \psi _{2,\xi _{1}}\theta _{2,\xi _{2}} + \theta _{1,\xi _{1}}\psi _{1,\xi _{2}}\\ &\quad + \theta _{2,\xi _{1}}\psi _{2,\xi _{2}} + \frac{\psi _{2}}{R_{2}}\frac{\theta _{1}}{R_{1}} + \frac{\psi _{1}}{R_{1}}\frac{\theta _{2}}{R_{2}} \biggr] \end{aligned} \\ &\bigl( k_{5}^{9} \bigr) = 2 [ 3\theta _{1}\theta _{1,\xi _{1}} + 3\theta _{2}\theta _{2,\xi _{1}} ] \\ & \bigl( k_{4}^{9} \bigr) = [ 2 \times 3 \times \theta _{1} \times \theta _{1,\xi _{2}} + 2 \times 3 \times \theta _{2} \times \theta _{2,\xi _{2}} ] \\ &\bigl( k_{1}^{10} \bigr) = \biggl[ \theta _{1,\xi _{1}}^{2} + \theta _{2,\xi _{1}}^{2} + \frac{\theta _{1}^{2}}{R_{1}^{2}} \biggr] \\ &\bigl( k_{2}^{10} \bigr) = \biggl[ \theta _{1,\xi _{2}}^{2} + \theta _{2,\xi _{2}}^{2} + \frac{\theta _{2}^{2}}{R_{2}^{2}} \biggr] \\ & \bigl( k_{6}^{10} \bigr) = 2 \biggl[ \theta _{1,\xi _{1}}\theta _{1,\xi _{2}} + \theta _{2,\xi _{1}} \theta _{2,\xi _{2}} + \frac{\theta _{1}}{R_{1}}\frac{\theta _{2}}{R_{2}} \biggr] \end{aligned}$$
(A.1)

Some coupled terms in (A.1):

$$\begin{aligned} &u_{,\xi _{1}} = \frac{\partial \bar{u}}{\partial \xi _{1}} + \frac{\bar{w}}{R_{1}}, \qquad u_{,\xi _{2}} = \frac{\partial \bar{u}}{\partial \xi _{2}}, \qquad v_{,\xi _{1}} = \frac{\partial \bar{v}}{\partial \xi _{1}}\\ & v_{,\xi _{2}} = \frac{\partial \bar{v}}{\partial \xi _{2}} + \frac{\bar{w}}{R_{2}}, \qquad w_{,\xi _{1}} = \frac{\partial \bar{w}}{\partial \xi _{1}} - \frac{\bar{u}}{R_{1}}\\ & w_{,\xi _{2}} = \frac{\partial \bar{w}}{\partial \xi _{2}} - \frac{\bar{v}}{R_{2}},\qquad \phi _{1,\xi _{1}} = \frac{\partial \phi _{1}}{\partial \xi _{1}} \\ & \phi _{1,\xi _{2}} = \frac{\partial \phi _{1}}{\partial \xi _{2}},\qquad \phi _{2,\xi _{1}} = \frac{\partial \phi _{2}}{\partial \xi _{1}},\qquad \phi _{2,\xi _{2}} = \frac{\partial \phi _{2}}{\partial \xi _{2}}\\ & \psi _{1,\xi _{1}} = \frac{\partial \psi _{1}}{\partial \xi _{1}},\qquad \psi _{1,\xi _{2}} = \frac{\partial \psi _{1}}{\partial \xi _{2}},\qquad \psi _{2,\xi _{1}} = \frac{\partial \psi _{2}}{\partial \xi _{1}}\\ & \psi _{2,\xi _{2}} = \frac{\partial \psi _{2}}{\partial \xi _{2}},\qquad \theta _{1,\xi _{1}} = \frac{\partial \theta _{1}}{\partial \xi _{1}},\qquad \theta _{1,\xi _{2}} = \frac{\partial \theta _{1}}{\partial \xi _{2}}\\ & \theta _{2,\xi _{1}} = \frac{\partial \theta _{2}}{\partial \xi _{1}},\qquad \theta _{2,\xi _{2}} = \frac{\partial \theta _{2}}{\partial \xi _{2}} \end{aligned}$$

Linear and nonlinear thickness coordinate matrices as appeared in Eq. (4)

$$\begin{aligned} [ H ]_{L} &= \left [ \begin{array}{@{}cccccccccccccccccccc@{}} 1 & 0 & 0 & 0 & 0 & \zeta & 0 & 0 & 0 & 0 &\zeta ^{2} & 0 & 0 & 0 & 0 & \zeta ^{3} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & \zeta & 0 & 0 & 0& 0 & \zeta ^{2} & 0 & 0 & 0 & 0 & \zeta ^{3} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & \zeta & 0 & 0& 0 & 0 & \zeta ^{2} & 0 & 0 & 0 & 0 & \zeta ^{3} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \zeta & 0 & 0 & 0 & 0 & \zeta ^{2} & 0 & 0 & 0 & 0 & \zeta ^{3} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \zeta & 0 & 0 & 0 & 0 & \zeta ^{2} & 0 & 0 & 0 & 0 & \zeta ^{3} \end{array} \right . \\ {[H ]}_{\mathrm{NL}} &= \left [ \begin{array}{@{}cccccccccccccccc@{}} 1 & 0 & 0 & 0 & 0 & \zeta & 0 & 0 & 0 & 0 & \zeta ^{2} & 0 & 0 & 0 & 0 & \zeta ^{3} \\ 0 & 1 & 0 & 0 & 0 & 0 & \zeta & 0 & 0 & 0 & 0 & \zeta ^{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & \zeta & 0 & 0 & 0 & 0 & \zeta ^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \zeta & 0 & 0 & 0 & 0 & \zeta ^{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \zeta & 0 & 0 & 0 & 0 & \zeta ^{2} & 0 \end{array} \right . \\ &\quad \left . \begin{array}{@{}ccccccccccccccccc@{}} 0 & 0 & 0 & 0 & \zeta ^{4} & 0 & 0 & 0 & 0 & \zeta ^{5} & 0 & 0 & 0 & 0 & \zeta ^{6} & 0 & 0 \\ \zeta ^{3} & 0 & 0 & 0 & 0 & \zeta ^{4} & 0 & 0 & 0 & 0 & \zeta ^{5} & 0 & 0 & 0 & 0 & \zeta ^{6} & 0 \\ 0 & \zeta ^{3} & 0 & 0 & 0 & 0 & \zeta ^{4} & 0 & 0 & 0 & 0 & \zeta ^{5} & 0 & 0 & 0 & 0 & \zeta ^{6} \\ 0 & 0 & \zeta ^{3} & 0 & 0 & 0 & 0 & \zeta ^{4} & 0 & 0 & 0 & 0 & \zeta ^{5} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \zeta ^{3} & 0 & 0 & 0 & 0 & \zeta ^{4} & 0 & 0 & 0 & 0 & \zeta ^{5} & 0 & 0 & 0 \end{array} \right ] \end{aligned}$$
(A.2)

Individual terms of the matrix [A] as appeared in Eq. (23)

$$\begin{aligned} &{[ A ]}_{1\_1} = u_{,\xi _{1}},\qquad [ A ]_{1\_3} = v_{,\xi _{1}},\qquad [ A ]_{1\_5} = w_{,\xi _{1}},\qquad { [ A ]}_{2\_2} = u_{,\xi _{2}},\qquad [ A ]_{2\_4} = v_{,\xi _{2}},\qquad [ A ]_{2\_6} = w_{,\xi _{2}} \\ & {[ A ]}_{3\_1} = u_{,\xi _{2}},\qquad [ A ]_{3\_2} = u_{,\xi _{1}},\qquad [ A ]_{3\_3} = v_{,\xi _{2}},\qquad [ A ]_{3\_4} = v_{,\xi _{1}},\qquad [ A ]_{3\_5} = w_{,\xi _{2}},\qquad [ A ]_{3\_6} = w_{,\xi _{1}} \\ &[ A ]_{4\_1} = \phi _{1},\qquad [ A ]_{4\_3} = \phi _{2},\qquad [ A ]_{4\_22} = u_{,\xi _{1}},\qquad [ A ]_{4\_23} = v_{,\xi _{1}},\qquad [ A ]_{5\_2} = \phi _{1},\qquad [ A ]_{5\_4} = \phi _{2} \\ & [ A ]_{5\_22} = u_{,\xi _{2}}, \qquad [ A ]_{5\_23} = v_{,\xi _{2}},\qquad [ A ]_{6\_1} = \phi _{1,\xi _{1}},\qquad [ A ]_{6\_3} = \phi _{2,\xi _{1}},\qquad [ A ]_{6\_5} = - \frac{\phi _{1}}{R_{1}} \\ & [ A ]_{6\_7} = u_{,\xi _{1}} ,\qquad [ A ]_{6\_9} = v_{,\xi _{1}},\qquad [ A ]_{6\_22} = - \frac{w_{,\xi _{1}}}{R_{1}}, \qquad [ A ]_{7\_2} = \phi _{1,\xi _{2}}, \qquad [ A ]_{7\_4} = \phi _{2,\xi _{2}} \\ & [ A ]_{7\_6} = - \frac{\phi _{2}}{R_{2}},\qquad [ A ]_{7\_8} = u_{,\xi _{2}} ,\qquad [ A ]_{7\_10} = v_{,\xi _{2}},\qquad [ A ]_{7\_23} = - \frac{w_{\xi _{2}}}{R_{2}},\qquad [ A ]_{8\_1} = \phi _{1,\xi _{2}} \\ &[ A ]_{8\_2} = \phi _{1,\xi _{1}},\qquad [ A ]_{8\_3} = \phi _{2,\xi _{2}}, \qquad [ A ]_{8\_4} = \phi _{2,\xi _{1}}, \qquad [ A ]_{8\_5} = - \frac{\phi _{2}}{R_{2}}, \qquad [ A ]_{8\_6} = - \frac{\phi _{1}}{R_{1}} \\ & [ A ]_{8\_7} = u_{,\xi _{2}},\qquad [ A ]_{8\_8} = u_{,\xi _{1}},\qquad [ A ]_{8\_9} = v_{,\xi _{2}},\qquad [ A ]_{8\_10} = v_{,\xi _{1}}, \qquad [ A ]_{8\_22} = - \frac{w_{\xi _{2}}}{R_{1}} \\ & [ A ]_{8\_23} = - \frac{w_{,\xi _{1}}}{R_{2}}, \qquad [ A ]_{9\_1} = 2\psi _{1}, \qquad [ A ]_{9\_3} = 2\psi _{2},\qquad [ A ]_{9\_7} = \phi _{1},\qquad [ A ]_{9\_9} = \phi _{2} \\ & [ A ]_{9\_22} = \phi _{1,\xi _{1}},\qquad [ A ]_{9\_23} = \phi _{2,\xi _{1}},\qquad [ A ]_{9\_24} = 2u_{,\xi _{1}},\qquad [ A ]_{9\_25} = 2v_{,\xi _{1}}, \qquad [ A ]_{10\_2} = 2\psi _{1} \\ & [ A ]_{10\_4} = 2\psi _{2},\qquad [ A ]_{10\_8} = \phi _{1},\qquad [ A ]_{10\_10} = \phi _{2},\qquad [ A ]_{10\_22} = \phi _{1,\xi _{2}}, \qquad [ A ]_{10\_23} = \phi _{2,\xi _{2}} \\ & [ A ]_{10\_24} = 2u_{,\xi _{2}},\qquad [ A ]_{10\_25} = 2v_{,\xi _{2}},\qquad [ A ]_{11\_1} = \psi _{1,\xi _{1}},\qquad [ A ]_{11\_3} = \psi _{2,\xi _{1}},\qquad [ A ]_{11\_5} = - \frac{\psi _{1}}{R_{1}} \\ & [ A ]_{11\_7} = \phi _{1,\xi _{1}}, \qquad [ A ]_{11\_9} = \phi _{2,\xi _{1}},\qquad [ A ]_{11\_11} = u_{,\xi _{1}},\qquad [ A ]_{11\_13} = v_{,\xi _{1}},\qquad [ A ]_{11\_22} = \frac{\phi _{1}}{R_{1}^{2}} \\ & [ A ]_{11\_24} = - \frac{w_{,\xi _{1}}}{R_{1}},\qquad [ A ]_{12\_2} = \psi _{1,\xi _{2}},\qquad [ A ]_{12\_4} = \psi _{2,\xi _{2}},\qquad [ A ]_{12\_6} = - \frac{\psi _{2}}{R_{2}},\qquad [ A ]_{12\_8} = \phi _{1,\xi _{2}} \\ & [ A ]_{12\_10} = \phi _{2,\xi _{2}},\qquad [ A ]_{12\_12} = u_{,\xi _{2}},\qquad [ A ]_{12\_14} = v_{,\xi _{2}},\qquad [ A ]_{12\_23} = \frac{\phi _{2}}{R_{2}^{2}},\qquad [ A ]_{12\_25} = - \frac{w_{,\xi _{2}}}{R_{2}} \\ & [ A ]_{13\_1} = \psi _{1,\xi _{2}},\qquad [ A ]_{13\_2} = \psi _{1,\xi _{1}},\qquad [ A ]_{13\_3} = \psi _{2,\xi _{2}},\qquad [ A ]_{13\_4} = \psi _{2,\xi _{1}},\qquad [ A ]_{13\_5} = - \frac{\psi _{2}}{R_{2}} \\ & [ A ]_{13\_6} = - \frac{\psi _{1}}{R_{1}},\qquad [ A ]_{13\_7} = \phi _{1,\xi _{2}},\qquad [ A ]_{13\_8} = \phi _{1,\xi _{1}},\qquad [ A ]_{13\_9} = \phi _{2,\xi _{2}},\qquad [ A ]_{13\_10} = \phi _{2,\xi _{1}} \\ & [ A ]_{13\_11} = u_{,\xi _{2}},\qquad [ A ]_{13\_12} = u_{,\xi _{1}},\qquad [ A ]_{13\_13} = v_{,\xi _{2}},\qquad [ A ]_{13\_14} = v_{,\xi _{1}}, \qquad [ A ]_{13\_22} = \frac{1}{R_{1}}\frac{\phi _{2}}{R_{2}} \\ & [ A ]_{13\_23} = \frac{1}{R_{2}}\frac{\phi _{1}}{R_{1}},\qquad [ A ]_{13\_24} = - \frac{w_{,\xi _{2}}}{R_{1}},\qquad [ A ]_{13\_25} = - \frac{w_{,\xi _{1}}}{R_{2}},\qquad [ A ]_{14\_1} = 3\theta _{1},\qquad [ A ]_{14\_3} = 3\theta _{2} \\ & [ A ]_{14\_7} = 2\psi _{1},\qquad [ A ]_{14\_9} = 2\psi _{2},\qquad [ A ]_{14\_11} = \phi _{1},\qquad [ A ]_{14\_13} = \phi _{2}, \qquad [ A ]_{14\_22} = \psi _{1,\xi _{1}} \\ & [ A ]_{14\_23} = \psi _{2,\xi _{1}}, \qquad [ A ]_{14\_24} = 2\phi _{1,\xi _{1}},\qquad [ A ]_{14\_25} = 2\phi _{2,\xi _{1}},\qquad [ A ]_{14\_26} = 3u_{,\xi _{1}}, \qquad [ A ]_{14\_27} = 3v_{,\xi _{1}} \\ & [ A ]_{15\_2} = 3\theta _{1},\qquad [ A ]_{15\_4} = 3\theta _{2}, \qquad [ A ]_{15\_8} = 2\psi _{1},\qquad [ A ]_{15\_10} = 2\psi _{2}, \qquad [ A ]_{15\_12} = \phi _{1} \\ & [ A ]_{15\_14} = \phi _{2},\qquad [ A ]_{15\_22} = \psi _{1,\xi _{2}},\qquad [ A ]_{15\_23} = \psi _{2,\xi _{2}}, \qquad [ A ]_{15\_24} = 2\phi _{1,\xi _{2}}, \qquad [ A ]_{15\_25} = 2\phi _{2,\xi _{2}} \\ & [ A ]_{15\_26} = 3u_{,\xi _{2}},\qquad [ A ]_{15\_27} = 3v_{,\xi _{2}}, \qquad [ A ]_{16\_1} = \theta _{1,\xi _{1}},\qquad [ A ]_{16\_3} = \theta _{2,\xi _{1}}, \qquad [ A ]_{16\_5} = - \frac{\theta _{1}}{R_{1}} \\ &[ A ]_{16\_7} = \psi _{1,\xi _{1}},\qquad [ A ]_{16\_9} = \psi _{2,\xi _{1}},\qquad [ A ]_{16\_11} = \phi _{1,\xi _{1}},\qquad [ A ]_{16\_13} = \phi _{2,\xi _{1}},\qquad [ A ]_{16\_15} = u_{,\xi _{1}} \\ & [ A ]_{16\_17} = v_{,\xi _{1}},\qquad [ A ]_{16\_22} = \frac{\psi _{1}}{R_{1}^{2}},\qquad [ A ]_{16\_24} = \frac{\phi _{1}}{R_{1}^{2}}, \qquad [ A ]_{16\_26} = - \frac{w_{,\xi _{1}}}{R_{1}}, \qquad [ A ]_{17\_2} = \theta _{1,\xi _{2}} \\ &[ A ]_{17\_4} = \theta _{2,\xi _{2}},\qquad [ A ]_{17\_6} = - \frac{\theta _{2}}{R_{2}},\qquad [ A ]_{17\_8} = \psi _{1,\xi _{2}},\qquad [ A ]_{17\_10} = \psi _{2,\xi _{2}}, \qquad [ A ]_{17\_12} = \phi _{1,\xi _{2}} \\ & [ A ]_{17\_14} = \phi _{2,\xi _{2}},\qquad [ A ]_{17\_16} = u_{,\xi _{2}},\qquad [ A ]_{17\_18} = v_{,\xi _{2}},\qquad [ A ]_{17\_23} = \frac{\psi _{2}}{R_{2}^{2}},\qquad [ A ]_{17\_25} = \frac{\phi _{2}}{R_{2}^{2}} \\ & [ A ]_{17\_27} = - \frac{w_{,\xi _{2}}}{R_{2}},\qquad [ A ]_{18\_1} = \theta _{1,\xi _{2}},\qquad [ A ]_{18\_2} = \theta _{1,\xi _{1}},\qquad [ A ]_{18\_3} = \theta _{2,\xi _{2}},\qquad [ A ]_{18\_4} = \theta _{2,\xi _{1}} \\ & [ A ]_{18\_5} = - \frac{\theta _{2}}{R_{2}},\qquad [ A ]_{18\_6} = - \frac{\theta _{1}}{R_{1}},\qquad [ A ]_{18\_7} = \psi _{1,\xi _{2}},\qquad [ A ]_{18\_8} = \psi _{1,\xi _{1}}, \qquad [ A ]_{18\_9} = \psi _{2,\xi _{2}} \\ & [ A ]_{18\_10} = \psi _{2,\xi _{1}},\qquad [ A ]_{18\_11} = \phi _{1,\xi _{2}},\qquad [ A ]_{18\_12} = \phi _{1,\xi _{1}},\qquad [ A ]_{18\_13} = \phi _{2,\xi _{2}}, \qquad [ A ]_{18\_14} = \phi _{2,\xi _{1}} \\ & [ A ]_{18\_15} = u_{,\xi _{2}},\qquad [ A ]_{18\_16} = u_{,\xi _{1}},\qquad [ A ]_{18\_17} = v_{,\xi _{2}},\qquad [ A ]_{18\_18} = v_{,\xi _{1}},\qquad [ A ]_{18\_22} = \frac{1}{R_{1}}\frac{\psi _{2}}{R_{2}} \\ & [ A ]_{18\_23} = \frac{1}{R_{2}}\frac{\psi _{1}}{R_{1}},\qquad [ A ]_{18\_24} = \frac{1}{R_{1}}\frac{\phi _{2}}{R_{2}},\qquad [ A ]_{18\_25} = \frac{1}{R_{2}}\frac{\phi _{1}}{R_{1}},\qquad [ A ]_{18\_26} = - \frac{w_{,\xi _{2}}}{R_{1}} \\ & [ A ]_{18\_27} = - \frac{w_{,\xi _{1}}}{R_{2}},\qquad [ A ]_{19\_7} = 3\theta _{1},\qquad [ A ]_{19\_9} = 3\theta _{2},\qquad [ A ]_{19\_11} = 2\psi _{1},\qquad [ A ]_{19\_13} = 2\psi _{2} \\ & [ A ]_{19\_15} = \phi _{1},\qquad [ A ]_{19\_17} = \phi _{2},\qquad [ A ]_{19\_22} = \theta _{1,\xi _{1}},\qquad [ A ]_{19\_23} = \theta _{2,\xi _{1}}, \qquad [ A ]_{19\_24} = 2\psi _{1,\xi _{1}} \\ & [ A ]_{19\_25} = 2\psi _{2,\xi _{1}}, \qquad [ A ]_{19\_26} = 3\phi _{1,\xi _{1}}, \qquad [ A ]_{19\_27} = 3\phi _{2,\xi _{1}},\qquad [ A ]_{20\_8} = 3\theta _{1}, \qquad [ A ]_{20\_10} = 3\theta _{2} \\ & [ A ]_{20\_12} = 2\psi _{1}, \qquad [ A ]_{20\_14} = 2\psi _{2},\qquad [ A ]_{20\_16} = \phi _{1},\qquad [ A ]_{20\_18} = \phi _{2}, \qquad [ A ]_{20\_22} = \theta _{1,\xi _{2}} \\ & [ A ]_{20\_23} = \theta _{2,\xi _{2}}, \qquad [ A ]_{20\_25} = 2\psi _{2,\xi _{2}}, \qquad [ A ]_{20\_26} = 3\phi _{1,\xi _{2}}, \qquad [ A ]_{20\_27} = 3\phi _{2,\xi _{2}},\qquad [ A ]_{21\_7} = \theta _{1,\xi _{1}} \\ & [ A ]_{21\_9} = \theta _{2,\xi _{1}},\qquad [ A ]_{21\_11} = \psi _{1,\xi _{1}},\qquad [ A ]_{21\_13} = \psi _{2,\xi _{1}}, \qquad [ A ]_{21\_15} = \phi _{1,\xi _{1}},\qquad [ A ]_{21\_17} = \phi _{2,\xi _{1}} \\ & [ A ]_{21\_22} = \frac{\theta _{1}}{R_{1}^{2}},\qquad [ A ]_{21\_24} = \frac{\psi _{1}}{R_{1}^{2}},\qquad [ A ]_{21\_26} = \frac{\phi _{1}}{R_{1}^{2}},\qquad [ A ]_{22\_8} = \theta _{1,\xi _{2}},\qquad [ A ]_{22\_10} = \theta _{2,\xi _{2}} \\ & [ A ]_{22\_12} = \psi _{1,\xi _{2}},\qquad [ A ]_{22\_14} = \psi _{2,\xi _{2}}, \qquad [ A ]_{22\_16} = \phi _{1,\xi _{2}},\qquad [ A ]_{22\_18} = \phi _{2,\xi _{2}}, \qquad [ A ]_{22\_23} = \frac{\theta _{2}}{R_{2}^{2}} \\ & [ A ]_{22\_25} = \frac{\psi _{2}}{R_{2}^{2}},\qquad [ A ]_{22\_27} = \frac{\phi _{2}}{R_{2}^{2}}, \qquad [ A ]_{23\_7} = \theta _{1,\xi _{2}},\qquad [ A ]_{23\_8} = \theta _{1,\xi _{1}},\qquad [ A ]_{23\_9} = \theta _{2,\xi _{2}} \\ & [ A ]_{23\_10} = \theta _{2,\xi _{1}},\qquad [ A ]_{23\_11} = \psi _{1,\xi _{2}}, \qquad [ A ]_{23\_12} = \psi _{1,\xi _{1}},\qquad [ A ]_{23\_13} = \psi _{2,\xi _{2}},\qquad [ A ]_{23\_13} = \psi _{2,\xi _{2}} \\ & [ A ]_{23\_14} = \psi _{2,\xi _{1}},\qquad [ A ]_{23\_15} = \phi _{1,\xi _{2}},\qquad [ A ]_{23\_16} = \phi _{1,\xi _{1}},\qquad [ A ]_{23\_17} = \phi _{2,\xi _{2}},\qquad [ A ]_{23\_18} = \phi _{2,\xi _{1}} \\ & [ A ]_{23\_22} = \frac{1}{R_{1}}\frac{\theta _{2}}{R_{2}},\qquad [ A ]_{23\_23} = \frac{1}{R_{2}}\frac{\theta _{1}}{R_{1}}, \qquad [ A ]_{23\_24} = \frac{1}{R_{1}}\frac{\psi _{2}}{R_{2}},\qquad [ A ]_{23\_25} = \frac{1}{R_{2}}\frac{\psi _{1}}{R_{1}} \\ &[ A ]_{23\_26} = \frac{1}{R_{1}}\frac{\phi _{2}}{R_{2}},\qquad [ A ]_{23\_27} = \frac{1}{R_{2}}\frac{\phi _{1}}{R_{1}}, \qquad [ A ]_{24\_11} = 3\theta _{1}, \qquad [ A ]_{24\_13} = 3\theta _{2},\qquad [ A ]_{24\_15} = 2\psi _{1} \\ & [ A ]_{24\_17} = 2\psi _{2},\qquad [ A ]_{24\_24} = 2\theta _{1,\xi _{1}},\qquad [ A ]_{24\_25} = 2\theta _{2,\xi _{1}},\qquad [ A ]_{24\_26} = 3\psi _{1,\xi _{1}},\qquad [ A ]_{24\_27} = 3\psi _{2,\xi _{1}} \\ & [ A ]_{25\_12} = 3\theta _{1},\qquad [ A ]_{25\_14} = 3\theta _{2}, \qquad [ A ]_{25\_16} = 2\psi _{1}, \qquad [ A ]_{25\_18} = 2\psi _{2},\qquad [ A ]_{25\_24} = 2\theta _{1,\xi _{2}} \\ & [ A ]_{25\_25} = 2\theta _{2,\xi _{2}}, \qquad [ A ]_{25\_26} = 3\psi _{1,\xi _{2}}, \qquad [ A ]_{25\_27} = 3\psi _{2,\xi _{2}}, \qquad [ A ]_{26\_11} = \theta _{1,\xi _{1}},\qquad [ A ]_{26\_13} = \theta _{2,\xi _{1}} \\ & [ A ]_{26\_15} = \psi _{1,\xi _{1}},\qquad [ A ]_{26\_17} = \psi _{2,\xi _{1}}, \qquad [ A ]_{26\_24} = \frac{\theta _{1}}{R_{1}^{2}}, \qquad [ A ]_{26\_26} = \frac{\psi _{1}}{R_{1}^{2}}, \qquad [ A ]_{27\_12} = \theta _{1,\xi _{2}} \\ & [ A ]_{27\_14} = \theta _{2,\xi _{2}},\qquad [ A ]_{27\_16} = \psi _{1,\xi _{2}}, \qquad [ A ]_{27\_18} = \psi _{2,\xi _{2}}, \qquad [ A ]_{27\_25} = \frac{\theta _{2}}{R_{2}^{2}}, \qquad [ A ]_{27\_27} = \frac{\psi _{2}}{R_{2}^{2}} \\ & [ A ]_{28\_11} = \theta _{1,\xi _{2}}, \qquad [ A ]_{28\_12} = \theta _{1,\xi _{1}}, \qquad [ A ]_{28\_13} = \theta _{2,\xi _{2}},\qquad [ A ]_{28\_14} = \theta _{2,\xi _{1}},\qquad [ A ]_{28\_15} = \psi _{1,\xi _{2}} \\ & [ A ]_{28\_16} = \psi _{1,\xi _{1}},\qquad [ A ]_{28\_17} = \psi _{2,\xi _{2}},\qquad [ A ]_{28\_18} = \psi _{2,\xi _{1}},\qquad [ A ]_{28\_24} = \frac{1}{R_{1}}\frac{\theta _{2}}{R_{2}},\qquad [ A ]_{28\_25} = \frac{1}{R_{2}}\frac{\theta _{1}}{R_{1}} \\ & [ A ]_{28\_26} = \frac{1}{R_{1}}\frac{\psi _{2}}{R_{2}},\qquad [ A ]_{28\_27} = \frac{1}{R_{2}}\frac{\psi _{1}}{R_{1}}, \qquad [ A ]_{29\_15} = 3\theta _{1},\qquad [ A ]_{29\_17} = 3\theta _{2}, \qquad [ A ]_{29\_26} = 3\theta _{1,\xi _{1}} \\ & [ A ]_{29\_27} = 3\theta _{2,\xi _{1}}, \qquad [ A ]_{30\_16} = 3\theta _{1},\qquad [ A ]_{30\_18} = 3\theta _{2},\qquad [ A ]_{30\_26} = 3\theta _{1,\xi _{2}},\qquad [ A ]_{30\_27} = 3\theta _{2,\xi _{2}} \\ & [ A ]_{31\_15} = \theta _{1,\xi _{1}}, \qquad {[ A ]}_{31\_17} = \theta _{2,\xi _{1}},\qquad [ A ]_{31\_26} = \frac{\theta _{1}}{R_{1}^{2}},\qquad [ A ]_{32\_16} = \theta _{1,\xi _{2}},\qquad [ A ]_{32\_18} = \theta _{2,\xi _{2}} \\ &[ A ]_{32\_27} = \frac{\theta _{2}}{R_{2}^{2}}, \qquad [ A ]_{33\_15} = \theta _{1,\xi _{2}},\qquad [ A ]_{33\_16} = \theta _{1,\xi _{1}},\qquad [ A ]_{33\_17} = \theta _{2,\xi _{2}},\qquad [ A ]_{33\_18} = \theta _{2,\xi _{1}} \\ & [ A ]_{33\_26} = \frac{1}{R_{1}} \frac{\theta _{2}}{R_{2}}, \qquad {[ A ]}_{33\_27} = \frac{1}{R_{2}}\frac{\theta _{1}}{R_{1}} \end{aligned}$$
(A.3)

Individual terms of the matrix [G]

$$\begin{aligned} &[ G ]_{1\_1} = \frac{\partial}{\partial \xi _{1}},\qquad [ G ]_{1\_3} = \frac{1}{R_{1}},\qquad [ G ]_{2\_1} = \frac{\partial}{\partial \xi _{2}},\qquad [ G ]_{3\_2} = \frac{\partial}{\partial \xi _{1}}, \qquad [ G ]_{4\_2} = \frac{\partial}{\partial \xi _{2}},\qquad [ G ]_{4\_3} = \frac{1}{R_{2}} \\ & [ G ]_{5\_1} = - \frac{1}{R_{1}},\qquad [ G ]_{5\_3} = \frac{\partial}{\partial \xi _{1}},\qquad [ G ]_{6\_2} = - \frac{1}{R_{2}},\qquad [ G ]_{6\_3} = \frac{\partial}{\partial \xi _{2}},\qquad [ G ]_{7\_4} = \frac{\partial}{\partial \xi _{1}} \\ & [ G ]_{8\_4} = \frac{\partial}{\partial \xi _{2}}, \qquad [ G ]_{9\_5} = \frac{\partial}{\partial \xi _{1}},\qquad [ G ]_{10\_5} = \frac{\partial}{\partial \xi _{2}},\qquad [ G ]_{11\_6} = \frac{\partial}{\partial \xi _{1}},\qquad [ G ]_{12\_6} = \frac{\partial}{\partial \xi _{2}} \\ & [ G ]_{13\_7} = \frac{\partial}{\partial \xi _{1}},\qquad [ G ]_{14\_7} = \frac{\partial}{\partial \xi _{2}},\qquad [ G ]_{15\_8} = \frac{\partial}{\partial \xi _{1}},\qquad [ G ]_{16\_8} = \frac{\partial}{\partial \xi _{2}},\qquad [ G ]_{18\_9} = \frac{\partial}{\partial \xi _{2}} \\ & [ G ]_{19\_1} = 1, \qquad [ G ]_{20\_2} = 1,\qquad [ G ]_{21\_3} = 1,\qquad [ G ]_{22\_4} = 1,\qquad [ G ]_{23\_5} = 1,\qquad [ G ]_{24\_6} = 1 \\ & [ G ]_{25\_7} = 1,\qquad [ G ]_{26\_8} = 1,\qquad [ G ]_{27\_9} = 1 \end{aligned}$$
(A.4)

The evaluation steps of the geometric strain vector \(\{ \bar{\varepsilon} _{G} \}\) and the material property matrix [D G ] as appeared in Eq. (21) are derived as follows:

$$\begin{aligned} \{ \bar{\varepsilon} _{G} \} = \frac{1}{2}\left \{ \begin{array}{@{}l@{}} {[ ( \bar{u}_{,\xi _{1}} )^{2} + ( \bar{v}_{,\xi _{1}} )^{2} + ( \bar{w}_{,\xi _{1}} )^{2} ]} \\ {[ ( \bar{u}_{,\xi _{2}} )^{2} + ( \bar{v}_{,\xi _{2}} )^{2} + ( \bar{w}_{,\xi _{2}} )^{2} ]} \\ 2 [ ( \bar{u}_{,\xi _{1}} ) ( \bar{u}_{,\xi _{2}} ) + ( \bar{v}_{,\xi _{1}} ) ( \bar{v}_{,\xi _{2}} ) \\ \quad + ( \bar{w}_{,\xi _{1}} ) ( \bar{w}_{,\xi _{2}} ) ] \end{array} \right \} \quad \mbox{or,}\quad \{ \bar{\varepsilon} _{G} \} = [ H_{ G } ] \{ \varepsilon _{G} \} = [ H_{ G } ] [ A _{ G } ] \{ \beta _{ G } \} \end{aligned}$$

The values of [A G ] and {β G } are

$$ {[ A _{ G } ]} = \left \{ \begin{array}{@{}l@{}} {[ ( u_{,\xi _{1}} ) + ( v_{,\xi _{1}} ) + ( w_{,\xi _{1}} ) ]} \\ {[ ( u_{,\xi _{2}} ) + ( v_{,\xi _{2}} ) + ( w_{,\xi _{2}} ) ]} \\ {}[ ( u_{,\xi _{1}} ) ( u_{,\xi _{2}} ) + ( v_{,\xi _{1}} ) ( v_{,\xi _{2}} ) \\ \quad + ( w_{,\xi _{1}} ) ( w_{,\xi _{2}} ) ] \end{array} \right \} \quad \mbox{and}\quad \{ \beta _{ G } \} = \left [ \begin{array}{@{}c@{}} u_{,\xi _{1}} \\ u_{,\xi _{2}} \\ v_{,\xi _{1}} \\ v_{,\xi _{2}} \\ w_{,\xi _{1}} \\ w_{,\xi _{2}} \end{array} \right ] $$
(A.5)

The values of material property matrix are obtained by the following procedure:

$$\begin{aligned} [ D_{G} ] = \sum_{k = 1}^{N} \int_{\zeta _{k - 1}}^{\zeta _{k}} [ H_{ G } ]^{\mathrm{T}} \{ \bar{S} \}^{k} [ H_{ G } ] \quad \mbox{where}\ \{ \bar{S} \}^{k} = \left [ \begin{array}{@{}cccccc@{}} N_{\Delta t1} & N_{\Delta t12} & 0 & 0 & 0 & 0 \\ N_{\Delta t12} & N_{\Delta t2} & 0 & 0 & 0 & 0 \\ 0 & 0 & N_{\Delta t1} & N_{\Delta t12} & 0 & 0 \\ 0 & 0 & N_{\Delta t12} & N_{\Delta t2} & 0 & 0 \\ 0 & 0 & 0 & 0 & N_{\Delta t1} & N_{\Delta t12} \\ 0 & 0 & 0 & 0 & N_{\Delta t12} & N_{\Delta t2} \end{array} \right ] \end{aligned}$$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panda, S.K., Singh, B.N. Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibers. Nonlinear Dyn 74, 395–418 (2013). https://doi.org/10.1007/s11071-013-0978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0978-5

Keywords

Navigation