Skip to main content
Log in

Passivity analysis of delayed neural networks with discontinuous activations via differential inclusions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Without assuming the boundedness and monotonicity of neuron activations, we investigate passivity of delayed neural networks with discontinuous activations. Based on differential inclusion theory, sufficient conditions are established in form of linear matrix inequality by employing the generalized Lyapunov approach. In addition, a kind of control input is designed to stabilize neural network with activation functions having special form. Finally, some numerical examples are proposed to show the effectiveness of developed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang, Y.Q., Cao, J.D.: A feedback neural network for solving convex constraint optimization problems. Appl. Math. Comput. 201, 340–350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu, Y.R., Wang, Z.D., Liang, J.L., Liu, X.H.: Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays. IEEE Trans. Neural Netw. 20, 1102–1116 (2009)

    Article  Google Scholar 

  3. Shen, Y., Wang, J.: Almost sure exponential stability of recurrent neural networks with Markovian switching. IEEE Trans. Neural Netw. 20, 840–855 (2009)

    Article  Google Scholar 

  4. Liu, Z.W., Zhang, H.G., Wang, Z.S.: Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays. Neurocomputing 72, 1056–1064 (2009)

    Article  Google Scholar 

  5. Kaslik, E., Sivasundaram, S.: Impulsive hybrid discrete-time Hopfield neural networks with delays and multistability analysis. Neural Netw. 24, 370–377 (2011)

    Article  MATH  Google Scholar 

  6. Xia, Y., Wang, J.: A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans. Neural Netw. 15, 318–328 (2004)

    Article  MathSciNet  Google Scholar 

  7. Liao, X.X., Luo, Q., Zeng, Z.G., Guo, Y.X.: Global exponential stability in Lagrange sense for recurrent neural networks with time delays. Nonlinear Anal., Real World Appl. 9, 1535–1557 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, B.Z., Lam, D.: Neural networks letter: stability analysis of static recurrent neural networks using delay-partitioning and projection. Neural Netw. 22, 343–347 (2009)

    Article  Google Scholar 

  9. Liu, Z.W., Zhang, H.G., Zhang, Q.L.: Novel stability analysis for recurrent neural networks with multiple delays via line integral-type L–K functional. IEEE Trans. Neural Netw. 21, 1710–1718 (2010)

    Article  Google Scholar 

  10. Wang, L.L., Chen, T.P.: Complete stability of cellular neural networks with unbounded time-varying delays. Neural Netw. 36, 11–17 (2012)

    Article  Google Scholar 

  11. Faydasicok, O., Arik, S.: Equilibrium and stability analysis of delayed neural networks under parameter uncertainties. Appl. Math. Comput. 218, 6716–6726 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, H.G., Wang, Z.S., Liu, D.R.: Global asymptotic stability of recurrent neural networks with multiple time-varying delays. IEEE Trans. Neural Netw. 19, 855–873 (2008)

    Article  Google Scholar 

  13. Zhang, W.B., Tang, Y., Fang, J.A., Wue, X.T.: Stability of delayed neural networks with time-varying impulses. Neural Netw. 36, 59–63 (2012)

    Article  MATH  Google Scholar 

  14. Zhu, Q.X., Cao, J.D.: Stability of Markovian jump neural networks with impulse control and time varying delays. Nonlinear Anal., Real World Appl. 13, 2259–2270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984)

    Article  Google Scholar 

  16. Forti, M., Nistri, P.: Global convergence of neural networks with discontinuous neuron activation. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50, 1421–1435 (2003)

    Article  MathSciNet  Google Scholar 

  17. Forti, M., Nistri, P., Papini, D.: Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans. Neural Netw. 16, 1449–1463 (2005)

    Article  Google Scholar 

  18. Forti, M., Grazzini, M., Nistri, P.: Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Physica D 214, 88–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Allegretto, W., Papini, D., Forti, M.: Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks. IEEE Trans. Neural Netw. 21, 1110–1125 (2010)

    Article  Google Scholar 

  20. Lu, W.L., Chen, T.P.: Dynamical behaviors of Cohen–Grossberg neural networks with discontinuous activation functions. Neural Netw. 18, 231–242 (2005)

    Article  MATH  Google Scholar 

  21. Liu, W.L., Chen, T.P.: Almost periodic dynamics of a class of delayed neural networks with discontinuous activations. Neural Comput. 20, 1065–1090 (2008)

    Article  MathSciNet  Google Scholar 

  22. Wang, J.F., Huang, L.H., Guo, Z.Y.: Global asymptotic stability of neural networks with discontinuous activations. Neural Netw. 22, 931–937 (2009)

    Article  Google Scholar 

  23. Qin, S., Xue, X.P.: Global exponential stability and global convergence in finite time of neural networks with discontinuous activations. Neural Process. Lett. 29, 189–204 (2009)

    Article  Google Scholar 

  24. Liu, X.Y., Cao, J.D.: Robust state estimation for neural networks with discontinuous activations. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40, 1425–1437 (2010)

    Article  MathSciNet  Google Scholar 

  25. Nie, X.B., Cao, J.D.: Existence and global stability of equilibrium point for delayed competitive neural networks with discontinuous activation functions. Int. J. Syst. Sci. 43, 459–474 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cai, Z.W., Huang, L.H., Guo, Z.Y., Chen, X.Y.: On the periodic dynamics of a class of time-varying delayed neural networks via differential inclusions. Neural Netw. 33, 97–113 (2012)

    Article  MATH  Google Scholar 

  27. Zuo, Y., Wang, Y., Huang, L., Wang, Z., Liu, X., Li, C.: Robust stability criterion for delayed neural networks with discontinuous activation functions. Neural Process. Lett. 29, 29–44 (2009)

    Article  Google Scholar 

  28. Wu, Z.G., Park, J.H., Su, H.Y., Chu, J.: Passivity analysis of Markov jump neural networks with mixed time-delays and piecewise-constant transition rates. Nonlinear Anal., Real World Appl. 13, 2423–2431 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ahn, C.K.: Switched exponential state estimation of neural networks based on passivity theory. Nonlinear Dyn. 67, 573–586 (2012)

    Article  MATH  Google Scholar 

  30. Haddad, W.M., Bailey, J.M., Hovakimyan, N.: Passivity-based neural network adaptive output feedback control for nonlinear nonnegative dynamical systems. IEEE Trans. Neural Netw. 16, 387–398 (2005)

    Article  Google Scholar 

  31. Ahn, C.K.: Passive learning and input-to-state stability of switched Hopfield neural networks with time-delay. Inf. Sci. 180, 4582–4594 (2010)

    Article  MATH  Google Scholar 

  32. Ji, D.H., Koo, J.H., Won, S.C., Lee, S.M., Park, J.H.: Passivity-based control for Hopfield neural networks using convex representation. Appl. Math. Comput. 217, 6168–6175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kwon, O.M., Park, J.H., Lee, S.M., Cha, E.J.: A new augmented Lyapunov–Krasovskii functional approach to exponential passivity for neural networks with time-varying delays. Appl. Math. Comput. 217, 10231–10238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu, W., Li, X.: Passivity analysis of dynamic neural networks with different time-scales. Neural Process. Lett. 25, 143–155 (2007)

    Article  Google Scholar 

  35. Xu, S.Y., Zheng, W.X., Zou, Y.: Passivity analysis of neural networks with time-varying delays. IEEE Trans. Circuits Syst. II, Express Briefs 56, 325–329 (2009)

    Article  Google Scholar 

  36. Zhu, S., Shen, Y.: Passivity analysis of stochastic delayed neural networks with Markovian switching. Neurocomputing 74, 1754–1761 (2011)

    Article  Google Scholar 

  37. Zhu, S., Shen, Y., Chen, G.C.: Exponential passivity of neural networks with time-varying delay and uncertainty. Phys. Lett. A 375, 136–142 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu, A.L., Zeng, Z.G.: Exponential stabilization of memristive neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 23, 1919–1929 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the Natural Science Foundation of China under Grants 60974021 and 61125303, the 973 Program of China under Grant 2011CB710606 and the Fund for Distinguished Young Scholars of Hubei Province under Grant 2010CDA081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, J., Zeng, Z., Shen, W. et al. Passivity analysis of delayed neural networks with discontinuous activations via differential inclusions. Nonlinear Dyn 74, 213–225 (2013). https://doi.org/10.1007/s11071-013-0959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0959-8

Keywords

Navigation