Skip to main content
Log in

Numerical solution of the Schrödinger equations by using Delta-shaped basis functions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Numerical simulations of the nonlinear Schrödinger equations are studied using Delta-shaped basis functions, which recently proposed by Reutskiy. Propagation of a soliton, interaction of two solitons, birth of standing and mobile solitons and bound state solutions are simulated. Some conserved quantities are computed numerically for all cases. Then we extend application of the method to solve some coupled nonlinear Schrödinger equations. Obtained systems of ordinary differential equations are solved via the fourth- order Runge–Kutta method. Numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly. Some comparisons with the methods applied in the literature are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Chegini, N.G., Salaripanah, A., Mokhtari, R., Isvand, D.: Numerical solution of the regularized long wave equation using nonpolynomial splines. Nonlinear Dyn. 69(1–2), 459–471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dag, I.: A quartic B-spline finite element method for solving nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 174, 247–258 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Delfour, M., Fortin, M., Payne, G.: Finite-difference solutions of non-linear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gardner, L.R.T., Gardner, G.A., Zaki, S.I., Sharawi, Z.El.: B-spline finite element studies of the non-linear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 108, 303–318 (1993)

    Article  MATH  Google Scholar 

  5. Hon, Y.C., Yang, Z.: Meshless collocation method by Delta-shape basis functions for default barrier model. Eng. Anal. Bound. Elem. 33, 951–958 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ismail, M.S.: A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation. Appl. Math. Comput. 196(1), 273–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ismail, M.S.: Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method. Math. Comput. Simul. 78(4), 532–547 (2008)

    Article  MATH  Google Scholar 

  8. Ismail, M.S., Taha, T.R.: Numerical simulation of coupled nonlinear Schrödinger equation. Math. Comput. Simul. 56(6), 547–562 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kong, L., Duan, Y., Wang, L., Yin, X., Ma, Y.: Spectral-like resolution compact ADI finite difference method for the multi-dimensional Schrödinger equations. Math. Comput. Model. 55, 1798–1812 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Korkmaz, A., Dag, I.: A differential quadrature algorithm for simulations of nonlinear Schrödinger equation. Comput. Math. Appl. 56, 2222–2234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Korkmaz, A., Dag, I.: A differential quadrature algorithm for nonlinear Schrödinger equation. Nonlinear Dyn. 56, 69–83 (2009)

    Article  MATH  Google Scholar 

  12. Miles, J.M.: An envelope soliton problems. SIAM J. Appl. Math. 41, 227 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mohebbi, A.: Solitary wave solutions of the nonlinear generalized Pochhammer–Chree and regularized long wave equations. Nonlinear Dyn. 70(4), 2463–2474 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mokhtari, R., Mohseni, M.: A meshless method for solving mKdV equation. Comput. Phys. Commun. 183, 1259–1268 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mokhtari, R., Samadi Toodar, A., Chegini, N.G.: Numerical simulation of coupled nonlinear Schrödinger equations using the generalized differential quadrature method. Chin. Phys. Lett. 28(2), 020202 (2011)

    Article  Google Scholar 

  16. Mokhtari, R., Ziaratgahi, S.T.: Numerical solution of RLW equation using integrated radial basis functions. Appl. Comput. Math. 10(3), 428–448 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Rashid, A., Ismail, A.I.: A Chebishev spectral collocation method for the coupled nonlinear Schrödinger equation. Appl. Comput. Math. 9(9), 104–115 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Reutskiy, S.Y.: A boundary method of Trefftz type for PDEs with scattered data. Eng. Anal. Bound. Elem. 29, 713–724 (2005)

    Article  MATH  Google Scholar 

  19. Reutskiy, S.Y.: A meshless method for one-dimensional Stefan problems. Appl. Math. Comput. 217, 9689–9701 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tian, H.Y., Reutskiy, S., Chen, C.S.: New basis functions and their applications to PDEs. Int. Conf. Civ. Eng. Sci. 3(4), 169–175 (2007)

    Google Scholar 

  21. Tian, H.Y., Reutskiy, S., Chen, C.S.: A basis function for approximation and the solutions of partial differential equations. Numer. Methods Partial Differ. Equ. 24, 1018–1036 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equations. J. Comput. Phys. 55, 203–230 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  24. Zakharov, V.E., Shabat, A.B.: Exact theory of two dimensional self focusing and one dimensional self waves in non-linear media. Sov. Phys. JETP 34, 62 (1972)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mokhtari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhtari, R., Isvand, D., Chegini, N.G. et al. Numerical solution of the Schrödinger equations by using Delta-shaped basis functions. Nonlinear Dyn 74, 77–93 (2013). https://doi.org/10.1007/s11071-013-0950-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0950-4

Keywords

Navigation