Skip to main content
Log in

Controllable dynamical behaviors for spatiotemporal bright solitons on continuous wave background

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Inspired by the mapping method and the direct method of symmetry reduction method, we present a new algorithm, nonlinear Schrödinger equation-based constructive method, to solve complex nonlinear evolution equations. This method can easily construct infinite solutions of the complex nonlinear evolution equations from abundant solutions of the nonlinear Schrödinger equation, including multi-soliton solutions with and without continuous wave background, rational solutions and periodic solutions, and so on. With the aid of symbolic computation, we choose (2+1)-dimensional and (3+1)-dimensional variable-coefficient nonlinear Schrödinger equations to illustrate the validity and advantages of the proposed method. According to exact solutions, we also graphically discuss some interesting soliton-like wave dynamic behaviors, which may be observable in the future experiments. These results are helpful to increase the bit-rate of optical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhong, W.P., Belić, M.R., Huang, T.W.: Two-dimensional accessible solitons in PT-symmetric potentials. Nonlinear Dyn. 70, 2027–2034 (2012)

    Article  Google Scholar 

  2. Geng, X.G., Lv, Y.Y.: Darboux transformation for an integrable generalization of the nonlinear Schrödinger equation. Nonlinear Dyn. 69, 1621–1630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biswas, A., Khalique, C.M.: Stationary solutions for non-linear dispersive Schrödinger’s equation. Nonlinear Dyn. 63, 623–626 (2011)

    Article  MathSciNet  Google Scholar 

  4. Zhang, Y., Yang, S., Li, C., Ge, J.Y., Wei, W.W.: Exact solutions and Painleve analysis of a new (2+1)-dimensional generalized KdV equation. Nonlinear Dyn. 68, 445–458 (2012)

    Article  MATH  Google Scholar 

  5. Lü, X., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Generalized (2+1)-dimensional Gardner model: bilinear equations, Backlund transformation, lax representation and interaction mechanisms. Nonlinear Dyn. 67, 2279–2290 (2012)

    Article  MATH  Google Scholar 

  6. Wang, L., Gao, Y.T., Sun, Z.Y., Qi, F.H., Meng, D.X., Lin, G.D.: Solitonic interactions, Darboux transformation and double Wronskian solutions for a variable-coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas. Nonlinear Dyn. 67, 713–722 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lai, X.J., Cai, X.O.: Chirped Wave Solutions of a Generalized (3+1)-Dimensional Nonlinear Schrödinger Equation. Z. Naturforschung A, J. Phys. Sci. 66, 392–400 (2011)

    Google Scholar 

  8. Yang, Z., Ma, S.H., Fang, J.P.: Exact solutions and soliton structures of (2+1)-dimensional Zakharov–Kuznetsov equation. Chin. Phys. B 60, 92–96 (2011)

    Google Scholar 

  9. Ma, S.H., Fang, J.P., Yang Z, R.Q.B.: Chaotic behaviors of the (2+1)-dimensional generalized Breor Kaup system. Chin. Phys. B 21, 050511 (2012)

    Article  Google Scholar 

  10. Clarkson, P.A., Kruskal, M.D.: New similarity solutions of the Boussinesq equation. J. Math. Phys. 30, 2201–2213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lü, Z.S.: A Burgers equation-based constructive method for solving nonlinear evolution equations. Phys. Lett. A 353, 158–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, D.S., Li, X.G.: Localized nonlinear matter waves in a Bose–Einstein condensate with spatially inhomogeneous two- and three-body interactions. J. Phys. B, At. Mol. Opt. Phys. 45, 105301 (2012)

    Article  Google Scholar 

  13. Sun, K., Tian, B., Liu, W.J., Jiang, Y., Qu, Q.X., Wang, P.: Soliton dynamics and interaction in the Bose–Einstein condensates with harmonic trapping potential and time-varying interatomic interaction. Nonlinear Dyn. 67, 165–175 (2012)

    Article  MATH  Google Scholar 

  14. Ma, S.H., Qiang, J.Y., Fang, J.P.: The interaction between solitons and chaotic behaviours of (2+1)-dimensional Boiti–Leon–Pempinelli system. Acta Phys. Sin. 56, 620–626 (2007) (in Chinese)

    MathSciNet  MATH  Google Scholar 

  15. Chen, W.L., Zhang, W.T., Zhang, L.P., Dai, C.Q.: Non-completely elastic interactions in a (2+1)-dimensional dispersive long wave equation. Chin. Phys. B 21, 110507 (2012)

    Article  Google Scholar 

  16. Li, H.Q., Wan, X.M., Fu, Z.T., Liu, S.K.: New special structures to the (2+1)-dimensional breaking soliton equations. Phys. Scr. 84, 035005 (2011)

    Article  Google Scholar 

  17. Tian, Q., Wu, L., Zhang, J.F., Malomed, B.A., Mihalache, D., Liu, W.M.: Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with spatiotemporally modulated nonlinearity. Phys. Rev. E 83, 016602 (2011)

    Article  MathSciNet  Google Scholar 

  18. Zhang, J.F., Tian, Q., Wang, Y.Y., Dai, C.Q., Wu, L.: Self-similar optical pulses in competing cubic-quintic nonlinear media with distributed coefficients. Phys. Rev. A 81, 023832 (2010)

    Article  Google Scholar 

  19. Sturdevant, B., Lott, D.A., Biswas, A.: Topological solitons in 1+2 dimensions with time-dependent coefficients. PIER Lett. 10, 69–75 (2009)

    Article  Google Scholar 

  20. Malomed, B.A., Michalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B, Quantum Semiclass. Opt. 7, R53 (2005)

    Article  Google Scholar 

  21. Petrović, N., Belić, M., Zhong, W.P., Xie, R.H., Chen, G.: Exact spatiotemporal wave and soliton solutions to the generalized (3+1)-dimensional Schrödinger equation for both normal and anomalous dispersion. Opt. Lett. 34, 1609–1611 (2009)

    Article  Google Scholar 

  22. Bélanger, N., Bélanger, P.A.: Bright solitons on a cw background. Opt. Commun. 124, 301–308 (1996)

    Article  Google Scholar 

  23. Shin, H.J.: Soliton scattering from a finite conoidal wave train in a fiber. Phys. Rev. E 63, 026606 (2001)

    Article  Google Scholar 

  24. Shin, H.J.: The dark soliton on a conoidal wave background. J. Phys. A, Math. Gen. 38, 3307–3315 (2005)

    Article  MATH  Google Scholar 

  25. Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: How to excite a rogue wave. Phys. Rev. A 80, 043818 (2009)

    Article  Google Scholar 

  26. Dai, C.Q., Wang, Y.Y., Tian, Q., Zhang, J.F.: The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrodinger equation. Ann. Phys. 327, 512–521 (2012)

    Article  MATH  Google Scholar 

  27. Dai, C.Q., Zhou, G.Q., Zhang, J.F.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11005092 and the Zhejiang Provincial Natural Science Foundation of China under Grant No. Y13F050037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Qing Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, CQ., Zhang, JF. Controllable dynamical behaviors for spatiotemporal bright solitons on continuous wave background. Nonlinear Dyn 73, 2049–2057 (2013). https://doi.org/10.1007/s11071-013-0921-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0921-9

Keywords

Navigation