Skip to main content

Advertisement

Log in

Robotic locomotion of three generations of a family tree of dynamical systems. Part I: Passive gait patterns

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper includes the latest results of our research effort in developing a family of energetically efficient robots that can produce stable gait. Gravity powered bipeds provide ample proof for the possibility of designing robots that can walk using minimal energy. It is conceivable that mechanisms that are much simpler than legged robots can also produce gravity powered locomotion. In this paper, we present the results of our study of the first three generations of the family: a single mass, a two-mass, and a three-mass system. We show that these three systems can generate a rich set of passive gaits such as hopping, tapping, and walking each including various gait modes. These periodic passive gaits are sustained based on conditions for the physical parameters of the systems. We have developed a preliminary “contact based rule of passive gait patterns” that seems to work well for the first three generations of the family. We think that this rule can be extended to more complex generations of the family. The control issues are presented in Part II of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adolfsson, J., Dankowicz, H., Nordmark, A.: 3D passive walkers: finding periodic gaits in the presence of discontinuities. Nonlinear Dyn. 24, 205–229 (2001)

    Article  MATH  Google Scholar 

  2. Ahmadi, M.: Stable control of a one-legged robot exploiting passive dynamics. PhD thesis, Department of Mechanical Engineering, McGill University, Montreal, QC, Canada (1998)

  3. Saranli, U., Arslan, O., Ankarali, M.M., Morgul, O.: Approximate analytic solutions to non-symmetric stance trajectories of the passive spring-loaded inverted pendulum with damping. Nonlinear Dyn. 62, 729–742 (2010)

    Article  Google Scholar 

  4. Asano, F., Luo, Z.W., Yamakita, M.: Biped gait generation and control based on unified property of passive dynamic walking. IEEE Trans. Robot. 21, 754–762 (2005)

    Article  Google Scholar 

  5. Asano, F.: High-speed dynamic gait generation for limit cycle walkers based on forward-tilting impact posture. Multibody Syst. Dyn. 07/01, 1–24 (2012)

    Google Scholar 

  6. Brogliato, B., Zavala Rio, A.: On the control of complementary-slackness mechanical juggling systems. IEEE Trans. Autom. Control 45, 235–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Byl, B.: Metastable Legged-Robot Locomotion. Massachusetts Inst. Technol. Press, Cambridge (2008)

    Google Scholar 

  8. Collins, S.H., Ruina, A., Tedrake, R.L., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)

    Article  Google Scholar 

  9. Gharib, M., Celik, A., Hurmuzlu, Y.: Shock absorption using linear particle chains with multiple impacts. J. Appl. Mech. (2011, in press)

  10. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: stability, complexity, and scaling. J. Biomech. Eng. 120, 281–288 (1998)

    Article  Google Scholar 

  11. Goswami, A., Eapiau, B., Keramane, A.: Limit cycles in a passive compass gait biped and passivity-mimicking control laws. Auton. Robots 4, 273–286 (1997)

    Article  Google Scholar 

  12. Grizzle, J.W., Choi, J.: Feedback control of an underactuated planar bipedal robot with impulsive foot action. Robotica 23, 567–580 (2005)

    Article  Google Scholar 

  13. Aoi, S., Tsuchiya, K.: Self-stability of a simple walking model driven by a rhythmic signal. Nonlinear Dyn. 48, 1–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hurmuzlu, Y., Moskowitz, G.D.: Role of impact in the stability of bipedal locomotion. Int. J. Dyn. Stab. Syst. 1, 217–234 (1986)

    Article  Google Scholar 

  15. Hurmuzlu, Y., Moskowitz, G.D.: Bipedal locomotion stabilized by impact and switching, I: two and three dimensional, three element models. Int. J. Dyn. Stab. Syst. 2, 73–96 (1987)

    Article  Google Scholar 

  16. Hurmuzlu, Y., Moskowitz, G.D.: Bipedal locomotion stabilized by impact and switching, II: structural stability analysis of a four-element model. Int. J. Dyn. Stab. Syst. 2, 97–112 (1987)

    Article  Google Scholar 

  17. Hurmuzlu, Y.: Dynamics of bipedal gait; part Ii: stability analysis of a planar five-link biped. J. Appl. Mech. 60, 337–343 (1993)

    Article  Google Scholar 

  18. Hurmuzlu, Y., Marghitu, D.: Multi-contact collisions of kinematic chains with external surfaces. Int. J. Robot. Res. 13, 82–92 (1994)

    Article  Google Scholar 

  19. Hurmuzlu, Y., Genot, F., Brogliato, B.: Modeling, stability and control of biped robots-a general framework. Automatica 40, 1647–1664 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kudrolli, A., Dorbolo, S., Volfson, D., Tsmring, L.: Dynamics of a Bouncing Dimer. American Physical Society, New York (2005)

    Google Scholar 

  21. Liu, C., Zhao, Z., Brogliato, B.: Variable structure dynamics in a bouncing dimer. INRIA Resarch Report No. 6718 (2008)

  22. Liu, C., Zhao, Z., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts, II: qualitative analysis and numerical simulations. Proc. R. Soc. A 465, 2267–2292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marghitu, D.B., Nalluri, P.: Nonlinear dynamic stability of normal and arthritic greyhounds. Nonlinear Dyn. 12, 237–250 (1997)

    Article  MATH  Google Scholar 

  24. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9, 62–82 (1990)

    Article  Google Scholar 

  25. Mochon, S., McMahon, T.A.: Ballistic walking. J. Biomech. 27, 49–57 (1980)

    Article  Google Scholar 

  26. Piiroinen, P.T., Dankowitz, H.J., Nordmark, A.B.: Breaking symmetries and constraints: transitions from 2D to 3D in passive walkers. Multibody Syst. Dyn. 10, 147–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pratt, G.A.: Legged robots at MIT: what’s new since raibert. IEEE Robot. Autom. Mag. 7, 15–19 (2000)

    Article  Google Scholar 

  28. Qi, F., Wang, T., Li, J.: The elastic contact influences on passive walking gaits. Robotica 29, 787–796 (2010)

    Article  Google Scholar 

  29. Raibert, M.H.: Legged Robots That Balance. MIT Press, Cambridge (1986)

    Google Scholar 

  30. Ruina, A., Collins, S., Wisse, M.: A 3D passive-dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20, 607–615 (2001)

    Article  Google Scholar 

  31. Ruina, A., Bertram, J.E.A., Srinivasan, M.A.: Collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237, 170–192 (2005)

    Article  MathSciNet  Google Scholar 

  32. Spong, M.W.: Passivity based control of the compass gait biped. In: Proc. IFAC Triennial World Congr., Beijing, China, vol. 3, pp. 19–23 (1999)

    Google Scholar 

  33. Spong, M.W., Bhatia, B.: Further results on control of the compass gait biped. In: Proc. IROS 2003, Las Vegas, NV, 27–30 October, pp. 1933–1938 (2003)

    Google Scholar 

  34. Stronge, W.J.: Rigid body collisions with friction. Proc. R. Soc. A 431, 169–181 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tavakoli, A., Hurmuzlu, Y.: Gravity powered locomotion and active control of two simple systems. In: Proceedings of ASME Dynamics and Control Conference (DSCC 2009), vol. 1, p. 379, 12–14 October, Hollywood, CA (2009). doi:10.1115/DSCC2009-2699

    Chapter  Google Scholar 

  36. Westervelt, E.R., Morris, B., Farrell, K.D.: Analysis results and tools for the control of planar bipedal gaits using hybrid zero dynamics. Auton. Robots 23, 131–145 (2007)

    Article  Google Scholar 

  37. Wisse, M., Frankenhuyzen, J.V.: Design and construction of Mike: a 2D autonomous biped based on passive dynamic walking. In: Proc. 2nd Int. Symp. of Adaptive Motion and Animals and Machines, Kyoto, Japan (2003)

    Google Scholar 

  38. Wisse, M., Hobbelen, D.G.E.: In: Hackel, M. (ed.) Humanoid Robots, Human-Like Machines (2007). ISBN 978-3-902613-07-3

    Google Scholar 

  39. Wu, Q., Chen, J.: Effects of ramp angle and mass distributions on passive dynamic gait-an experimental study. Int. J. Humanoid Robot. 7, 55–72 (2010)

    Article  Google Scholar 

  40. Yilmaz, C., Gharib, M., Hurmuzlu, Y.: Solving frictionless rocking block problem with multiple impacts. Proc. R. Soc. A 465, 3323–3339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yildirim Hurmuzlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakoli, A., Hurmuzlu, Y. Robotic locomotion of three generations of a family tree of dynamical systems. Part I: Passive gait patterns. Nonlinear Dyn 73, 1969–1989 (2013). https://doi.org/10.1007/s11071-013-0918-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0918-4

Keywords

Navigation