Skip to main content
Log in

Friction memory effect in complex dynamics of earthquake model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In present paper, an effect of delayed frictional healing on complex dynamics of simple model of earthquake nucleation is analyzed, following the commonly accepted assumption that frictional healing represents the main mechanism for fault restrengthening. The studied model represents a generalization of Burridge–Knopoff single-block model with Dieterich–Ruina’s rate and state dependent friction law. The time-dependent character of the frictional healing process is modeled by introducing time delay τ in the friction term. Standard local bifurcation analysis of the obtained delay-differential equations demonstrates that the observed model exhibits Ruelle–Takens–Newhouse route to chaos. Domain in parameters space where the solutions are stable for all values of time delay is determined by applying the Rouché theorem. The obtained results are corroborated by Fourier power spectra and largest Lyapunov exponents techniques. In contrast to previous research, the performed analysis reveals that even the small perturbations of the control parameters could lead to deterministic chaos, and, thus, to instabilities and earthquakes. The obtained results further imply the necessity of taking into account this delayed character of frictional healing, which renders complex behavior of the model, already captured in the case of more than one block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bolt, A.B.: Earthquakes. Freeman, New York (2003)

    Google Scholar 

  2. Scholz, C.H.: The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  3. Marone, C.: Laboratory derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998)

    Article  Google Scholar 

  4. Dieterich, J.H.: Modeling of rock friction: 1; experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979)

    Article  Google Scholar 

  5. Ruina, A.L.: Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983)

    Article  Google Scholar 

  6. Perrin, G., Rice, J.R., Zheng, G.: Self-healing slip pulse on a frictional surface. J. Mech. Phys. Solids 43, 1461–1495 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rabinowicz, E.: The intrinsic variables affecting the stick-slip process. Proc. Phys. Soc. Lond. 71, 668–675 (1958)

    Article  Google Scholar 

  8. Tolstoi, D.M.: Significance of the normal degree of freedom and natural normal vibrations in contact friction. Wear 10, 199–213 (1967)

    Article  Google Scholar 

  9. Pomeau, Y., Le Berre, M.: Critical speed-up vs critical slow-down: a new kind of relaxation oscillation with application to stick-slip phenomena (2011). arXiv:1107.3331v1

  10. Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341–371 (1967)

    Google Scholar 

  11. Dieterich, J.H.: A model for the nucleation of earthquake slip. In: Das, S., Boatwright, J., Scholz, C. (eds.) Earthquakes Source Mechanics. Geophys. Monogr. Ser., vol. 37, pp. 36–49. Am. Geophys. Union, Washington (1986)

    Google Scholar 

  12. Dieterich, J.H.: Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics 211, 115–134 (1992)

    Article  Google Scholar 

  13. Scholz, C.H., Aviles, C.A., Wesnousky, S.G.: Scaling differences between large interplate and intraplate earthquakes. Bull. Seismol. Soc. Am. 76, 65–70 (1986)

    Google Scholar 

  14. Marone, C., Vidale, J.E., Ellsworth, W.: Fault healing inferred from time dependent variations in source properties of repeating earthquakes. Geophys. Res. Lett. 22, 3095–3098 (1995)

    Article  Google Scholar 

  15. Marone, C.: The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature 391, 69–72 (1998)

    Article  Google Scholar 

  16. Ben-David, O., Rubinstein, S.M., Fineberg, J.: Slip-stick and the evolution of frictional strength. Nature 463, 76–79 (2010)

    Article  Google Scholar 

  17. Gopalsamy, K., Leung, I.: Delay induced periodicity in a neural netlet of excitation and inhibition. Physica D 89, 395–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Burić, N., Todorović, D.: Dynamics of delay-differential equations modeling immunology of tumor growth. Chaos Solitons Fractals 13, 645–655 (2002)

    Article  MATH  Google Scholar 

  19. De Sousa Vieira, M.: Chaos and synchronized chaos in an earthquake model. Phys. Rev. Lett. 82, 201–204 (1999)

    Article  Google Scholar 

  20. Erickson, B., Birnir, B., Lavallee, D.: A model for aperiodicity in earthquakes. Nonlinear Process. Geophys. 15, 1–12 (2008)

    Article  Google Scholar 

  21. Erickson, B.A., Birnir, B., Lavallée, D.: Periodicity, chaos and localization in a Burridge–Knopoff model of an earthquake with rate-and-state friction. Geophys. J. Int. 187, 178–198 (2011)

    Article  Google Scholar 

  22. Dieterich, J.H., Kilgore, B.D.: Direct observation of frictional contacts: new insights for state dependent properties. Pure Appl. Geophys. 143, 283–302 (1994)

    Article  Google Scholar 

  23. Rice, J.R.: Spatio-temporal complexity of slip on a fault. J. Geophys. Res. 98, 9885–9907 (1993)

    Article  Google Scholar 

  24. Lapusta, N., Rice, J.R.: Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J. Geophys. Res. 108, 1–18 (2003)

    Article  Google Scholar 

  25. Szkutnik, J., Kawecka-Magiera, B., Kulakowski, K.: History-dependent synchronization in the Burridge–Knopoff model. Tribol. Ser. 43, 529–536 (2003)

    Article  Google Scholar 

  26. Engelborghs, K.: DDE-BIFTOOL v. 2.03: a MATLAB package for bifurcation analysis of delay differential equations (2000)

  27. Engelborghs, K., Luzyanina, T., Samaey, G.: Technical report TW-330, Department of Computer Science, K.U. Leuven, Leuven, Belgium (2001)

  28. Luzyanina, T., Enghelborghs, K., Ehl, S., Klenerman, P., Bocharov, G.: Low level viral persistence after infection with LCMV: a quantitative insight through numerical bifurcation analysis. Math. Biosci. 173, 1–23 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Haegeman, B., Engelborghs, K., Roose, D., Pieroux, D., Erneux, T.: Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback. Phys. Rev. E 66, 046216 (2002)

    Article  Google Scholar 

  30. http://www.matjazperc.com/ejp/time.html

  31. Belair, J., Campbell, S.A.: Stability and bifurcations of equilibria in a multiple delayed differential equation. SIAM J. Appl. Math. 54, 1402–1424 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Campbell, S.A., Belair, J., Ohira, T., Milton, J.: Limit cycles, tori and complex dynamics in a second-order differential equation with delayed negative feedback. J. Dyn. Differ. Equ. 7, 213–235 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Titchmarsh, E.C.: Theory of Functions. Oxford University Press, Oxford (1939)

    MATH  Google Scholar 

  34. Hale, J., Lunel, S.V.: Introduction to Functional Differential Equations. Springer, New York (1983)

    Google Scholar 

  35. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2000)

    Google Scholar 

  36. Kuznetsov, Y.A.: Elements of the Applied Bifurcation Theory. Springer, New York (2004)

    Book  Google Scholar 

  37. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–172 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ramana Reddy, D.V., Sen, A., Johnson, G.L.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80, 5109–5112 (1998)

    Article  Google Scholar 

  39. Campbell, S.A.: Time delays in neural systems. In: Jirsa, V.K., McIntosh, A.R. (eds.) Handbook on Brain Connectivity, pp. 65–90. Springer, Berlin (2007)

    Chapter  Google Scholar 

  40. Prasad, A., Dhamala, M., Adhikari, B.M., Ramaswamy, R.: Amplitude death in nonlinear oscillators with nonlinear coupling. Phys. Rev. E 81, 027201 (2010)

    Article  Google Scholar 

  41. Newhouse, S., Ruelle, D., Takens, F.: Occurrence of strange axiom-A attractors near quasiperiodic flow on 7, m>3. Commun. Math. Phys. 64, 35–44 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schmittbuhl, J., Vilotte, J.P., Roux, S.: Propagative macrodislocation modes in an earthquake fault model. Europhys. Lett. 21, 375–380 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Ministry of Education, Science, and Technological development, Contracts Nos. 176016, 171015, and 171017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srđan Kostić.

Appendix

Appendix

Starting from the system of equations:

$$\begin{array} {@{}l} \displaystyle\phi(\lambda) = \lambda^{3} + \lambda^{2} \biggl( \frac{\gamma^{2}}{\xi} + 1 \biggr) + \lambda \gamma^{2} \biggl( \frac{1}{\xi} + 1 \biggr) + \gamma ^{2} \\[4mm] \displaystyle \psi(\lambda) = - \lambda(1 + \varepsilon)\frac{\gamma^{2}}{\xi} e^{ - \lambda\tau} \end{array} $$

one could obtain:

Thus, we have:

$$\bigl| \phi(\lambda) \bigr| \ge| \lambda+ 1 |\gamma^{2} $$

While for the ψ(λ), we obtain:

assuming that |φ(λ)|>|ψ(λ)| on the contour C.

Thus, according to the previous:

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostić, S., Franović, I., Todorović, K. et al. Friction memory effect in complex dynamics of earthquake model. Nonlinear Dyn 73, 1933–1943 (2013). https://doi.org/10.1007/s11071-013-0914-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0914-8

Keywords

Navigation