Skip to main content
Log in

Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We analyze a second-order, nonlinear delay-differential equation with negative feedback. The characteristic equation for the linear stability of the equilibrium is completely solved, as a function of two parameters describing the strength of the feedback and the damping in the autonomous system. The bifurcations occurring as the linear stability is lost are investigated by the construction of a center manifold: The nature of Hopf bifurcations and more degenerate, higher-codimension bifurcations are explicitly determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bélair, J., and Campbell, S. A. (1994). Stability and bifurcations of equilibria in a multiple-delayed differential equation.SIAM J. Appl. Math. 54, 1402–1424.

    Google Scholar 

  2. Berger, B. S., Rokni, M., and Minis, I. (1993). Complex dynamics in metal cutting.Q. Appl. Math. 51, 601–612.

    Google Scholar 

  3. Beuter, A., Bélair, J., and Labrie, C. (1993). Feedback and delays in neurological diseases: a modeling study using dynamical systems.Bull. Math. Biol. 55, 525–541.

    Google Scholar 

  4. Bhatt, S. J., and Hsu, C. S. (1966). Stability criteria for second order dynamical systems with time lag.J. Appl. Mech. 33, 113–118.

    Google Scholar 

  5. Boe, E., and Chang, H.-C. (1989). Dynamics of delayed systems under feedback control.Chem. Eng. Sci. 44, 1281–1294.

    Google Scholar 

  6. Boe, E., and Chang, H.-C. (1991). Transition to chaos from a two-torus in a delayed feedback system.Int. J. Bifurc. Chaos 1, 67–82.

    Google Scholar 

  7. Boese, F. G. (1989). The stability chart for the linearized Cushing equation with a discrete delay and with gamma-distributed delays.J. Math. Anal. Appl. 140, 510–536.

    Google Scholar 

  8. Boese, F. G., and van den Driessche, P. (1994). Stability with respect to the delay in a class of differential-delay equations.Can. Appl. Math. Q. 2, 151–175.

    Google Scholar 

  9. Campbell, S. A., and Bélair, J. (1995). Analytical and symbolically-assisted investigation of Hopf bifurcations in delay-differential equations,Can. Appl. Math. Q. (in press).

  10. Campbell, S. A., Bélair, J., Ohira, T., and Milton, J. (1994). Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback, (submitted for publication).

  11. Chuma, J., and van den Driessche, P. (1980). A general second-order transcendental equation.Appl. Math. Notes 5, 85–96.

    Google Scholar 

  12. Cooke, K. L., and Grossman, Z. (1982). Discrete delay, distributed delay and stability switches,J. Math. Anal. Appl. 86, 592–627.

    Google Scholar 

  13. Gorelik, G. (1939). To the theory of feedback with delay.J. Tech. Phys. 9, 450–454.

    Google Scholar 

  14. Guckenheimer, J., and Holmes, P. J. (1983).Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.

    Google Scholar 

  15. Hale, J. K., and Verduyn Lunel, S. M. (1993).Introduction to Functional Differential Equations, Springer-Verlag, New York.

    Google Scholar 

  16. Hayes, N. (1950). Roots of the transcendental equation associated with a certain difference-differential equations.J. London Math. Soc. 25, 226–232.

    Google Scholar 

  17. an der Heiden, U. (1979). Delays in physiological systems.J. Math. Biol. 8, 345–364.

    Google Scholar 

  18. an der Heiden, U. (1979). Periodic solutions of a nonlinear second order differential equation with delay,J. Math. Anal. Appl. 70, 599–609.

    Google Scholar 

  19. an der Heiden, U., Longtin, A., Mackey, M. C., Milton, J. G., and Scholl, R. (1990). Oscillatory modes in a nonlinear second-order differential equation with delay.J. Dyn. Diff. Eq. 2, 423–449.

    Google Scholar 

  20. Longtin, A., and Milton, J. (1989). Modelling autonomous oscillations in the human pupil light reflex using delay-differential equations.Bull. Math. Biol. 51, 605–624.

    Google Scholar 

  21. MacDonald, N. (1989).Biological Delay Systems: Linear Stability Theory, Cambridge University Press, Cambridge.

    Google Scholar 

  22. Marsden, J. E., and McCracken, M. (1976).The Hopf Bifurcation and Its Applications, Springer-Verlag, New York.

    Google Scholar 

  23. Milton, J. G., and Longtin, A. (1990). Evaluation of pupil constriction and dilation from cycling measurements.Vision Res. 30, 515–525.

    Google Scholar 

  24. Milton, J. G., and Ohira, T. (1993). Dynamics of neuro-muscular control with delayed displacement-dependent feedback.Proc. 1st World Congr. Nonl. Anal. (in press).

  25. Reichardt, W., and Poggio, T. (1976). Visual control of orientation behavior of the fly.Q. Rev. Biophys. 9, 311–438.

    Google Scholar 

  26. Stépán, G. (1989).Retarded Dynamical Systems, Vol. 210. Pitman Research Notes in Mathematics, Longman Group, Essex.

    Google Scholar 

  27. Takens, F. (1974). Singularities of vector fields.Publ. Math. l'IHES 43, 47–100.

    Google Scholar 

  28. Vallée, R., Dubois, M., Coté, M., and Delisle, C. (1987). Second-order differential-delay equation to describe a hybrid bistable device.Phys. Rev. A 36, 1327–1332.

    Google Scholar 

  29. Waterloo Maple Software (1990).Maple V, University of Waterloo, Waterloo, Canada.

    Google Scholar 

  30. Wu, D. W., and Liu, C. R. (1985). An analytical model of cutting dynamics, Parts 1 and 2.ASMLE J. Eng. Indust. 17, 107–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, S.A., Bélair, J., Ohira, T. et al. Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback. J Dyn Diff Equat 7, 213–236 (1995). https://doi.org/10.1007/BF02218819

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02218819

Key words

AMS(MOS) classification numbers

Navigation