Skip to main content
Log in

Free vibration analysis of nonlinear resilient impact dampers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present study, free vibration of a vibratory system equipped with an impact damper, which incorporates the Hertzian contact theory, is investigated. A nonlinear model of an impact damper is constructed using spring, mass, and viscous damper. To increase accuracy of the solution, deformation of the impact damper during the collision with and the main mass is considered. The governing coupled nonlinear differential equations of a cantilever beam equipped with the impact damper are solved using the parameter expanding perturbation method. Contact durations, which are obtained using the presented method, are compared with previous results. Gap sizes of the impact dampers are classified to two main parts. The effects of selecting the gap sizes regarding to the discussed classification are investigated on the application of the impact dampers. Based on types of collision between colliding masses, the so-called “effectiveness” is defined. Finally, it is shown variation of the damping inclination with the gap size is similar to variation of the effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andreaus, U., Casini, P.: Dynamics of SDOF oscillators with hysteretic motion-limiting stop. Nonlinear Dyn. 22(2), 145–164 (2000). doi:10.1023/a:1008354220584

    Article  MathSciNet  Google Scholar 

  2. Andreaus, U., Placidi, L., Rega, G.: Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2603–2616 (2010). doi:10.1016/j.cnsns.2009.10.015

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreaus, U., Placidi, L., Rega, G.: Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 225(10), 2444–2456 (2011). doi:10.1177/0954406211414484

    Article  Google Scholar 

  4. Dimentberg, M.F., Iourtchenko, D.V.: Random vibrations with impacts: a review. Nonlinear Dyn. 36(2), 229–254 (2004). doi:10.1023/B:NODY.0000045510.93602.ca

    Article  MathSciNet  MATH  Google Scholar 

  5. Mann, B.P., Carter, R.E., Hazra, S.S.: Experimental study of an impact oscillator with viscoelastic and Hertzian contact. Nonlinear Dyn. 50(3), 587–595 (2007)

    Article  MATH  Google Scholar 

  6. Duncan, M.R.., Wassgren, C.R., Krousgrill, C.M.: The damping performance of a single particle impact damper. J. Sound Vib. 286(1–2), 123–144 (2005)

    Article  Google Scholar 

  7. Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Mapping and Applications. Lecture Notes in Applied and Computational Mechanics, vol. 43. Springer, Berlin (2009)

    Book  Google Scholar 

  8. Popplewell, N., Liao, M.: A simple design procedure for optimum impact dampers. J. Sound Vib. 146(3), 519–526 (1991)

    Article  Google Scholar 

  9. Zhang, D.-G., Angeles, J.: Impact dynamics of flexible-joint robots. Comput. Struct. 83(1), 25–33 (2005)

    Article  Google Scholar 

  10. Zinjade, P.B., Mallik, A.K.: Impact damper for controlling friction-driven oscillations. J. Sound Vib. 306(1–2), 238–251 (2007)

    Article  Google Scholar 

  11. Blazejczyk-Okolewska, B.: Analysis of an impact damper of vibrations. Chaos Solitons Fractals 12(11), 1983–1988 (2001)

    Article  Google Scholar 

  12. Bapat, C.N., Sankar, S.: Single unit impact damper in free and forced vibration. J. Sound Vib. 99(1), 85–94 (1985)

    Article  MathSciNet  Google Scholar 

  13. Ema, S., Marui, E.: A fundamental study on impact dampers. Int. J. Mach. Tools Manuf. 34(3), 407–421 (1994)

    Article  Google Scholar 

  14. Cheng, J., Xu, H.: Inner mass impact damper for attenuating structure vibration. Int. J. Solids Struct. 43(17), 5355–5369 (2006)

    Article  MATH  Google Scholar 

  15. Son, L., Hara, S., Yamada, K., Matsuhisa, H.: Experiment of shock vibration control using active momentum exchange impact damper. J. Vib. Control 16(1), 49–64 (2010). doi:10.1177/1077546309102675

    Article  Google Scholar 

  16. Andreaus, U., Casini, P.: Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle. Int. J. Non-Linear Mech. 37(1), 117–133 (2002). doi:10.1016/S0020-7462(00)00101-3

    Article  MATH  Google Scholar 

  17. Andreaus, U., Chiaia, B., Placidi, L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. 1(24) (2012). doi:10.1007/s00161-012-0266-5

  18. Palm, W.J.: Mechanical Vibration. Wiley, Hoboken (2007)

    Google Scholar 

  19. Rao, S.S.: Vibration of Continuous Systems. Wiley, Hoboken (2007)

    Google Scholar 

  20. Ba’zant, Z.P., Cedolin, L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, Hackensack, London (2010)

    Book  Google Scholar 

  21. Simitses, G.J., Hodges, D.H.: Fundamentals of Structural Stability. Elsevier/Butterworth-Heinemann, Amsterdam, Boston (2006)

    MATH  Google Scholar 

  22. Afsharfard, A., Farshidianfar, A.: An efficient method to solve the strongly coupled nonlinear differential equations of impact dampers. Arch. Appl. Mech. 82(7), 977–984 (2012). doi:10.1007/s00419-011-0605-1

    Article  Google Scholar 

  23. Thomson, W.T.: Theory of Vibration with Applications, 4th edn. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  24. Rand, R.H.: Lecture Notes on Nonlinear Vibrations. Cornell University, Ithaca (2005)

    Google Scholar 

  25. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009). doi:10.1016/j.ymssp.2008.04.002

    Article  Google Scholar 

  26. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  27. Nayfeh, A.H.: Perturbation Methods. Wiley Classics Library. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  28. Goldsmith, W.: Impact: The Theory and Physical Behaviour of Colliding Solids. Dover, Mineola (2002)

    Google Scholar 

  29. Cheng, C.C., Wang, J.Y.: Free vibration analysis of a resilient impact damper. Int. J. Mech. Sci. 45(4), 589–604 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aref Afsharfard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afsharfard, A., Farshidianfar, A. Free vibration analysis of nonlinear resilient impact dampers. Nonlinear Dyn 73, 155–166 (2013). https://doi.org/10.1007/s11071-013-0775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0775-1

Keywords

Navigation