Skip to main content
Log in

Chaos in the fractional-order complex Lorenz system and its synchronization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, a novel dynamic system, the fractional-order complex Lorenz system, is proposed. Dynamic behaviors of a fractional-order chaotic system in complex space are investigated for the first time. Chaotic regions and periodic windows are explored as well as different types of motion shown along the routes to chaos. Numerical experiments by means of phase portraits, bifurcation diagrams and the largest Lyapunov exponent are involved. A new method to search the lowest order of the fractional-order system is discussed. Based on the above result, a synchronization scheme in fractional-order complex Lorenz systems is presented and the corresponding numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Vinagre, B.M., Feliu, V.: Modeling and control of dynamic systems using fractional calculus: application to electrochemical processes and flexible structures. In: Proceedings of 41st IEEE Conference on Decision and Control, Las Vegas, pp. 214–239 (2002)

    Google Scholar 

  2. Magin, R.L.: Fractional Calculus in Bioengineering, vol. 32, pp. 1–377. Begell House, New York (2004)

    Google Scholar 

  3. Ross, B.: Fractional calculus and its application. In: Lecture Notes in Mathematics. Proceedings of the International Conference, New Haven. Springer, Berlin (1974)

    Google Scholar 

  4. Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)

    Google Scholar 

  5. Liu, L., Liang, D.L., Liu, C.X.: Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system. Nonlinear Dyn. 69(4), 1929–1939 (2012)

    Article  MathSciNet  Google Scholar 

  6. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos on a fractional Chua’s system. IEEE Trans. Circuits Syst. Theory Appl. 485–490 (1995)

  7. Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Chaos in a fractional order Duffing system. In: Proceedings ECCTD, Budapest, Hungary, vol. 3, pp. 1259–1262 (1997)

    Google Scholar 

  8. Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339–351 (2003)

    Article  MATH  Google Scholar 

  9. Li, C.G., Chen, G.R.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22, 549–554 (2004)

    Article  MATH  Google Scholar 

  10. Zhang, W.W., Zhou, S.B., Li, H., Zhu, H.: Chaos in a fractional-order Rössler system. Chaos Solitons Fractals 42, 1684–1691 (2009)

    Article  MATH  Google Scholar 

  11. Sun, K.H., Wang, X., Sprott, J.C.: Bifurcations and chaos in fractional-order simplified Lorenz system. Int. J. Bifurc. Chaos 4, 1209–1219 (2010)

    MathSciNet  Google Scholar 

  12. Roldan, E., Devalcarcel, G.J., Vilaseca, R.: Single-mode-laser phase dynamics. Phys. Rev. A 48(1), 591–598 (1993)

    Article  Google Scholar 

  13. Ning, C.Z., Haken, H.: Detuned lasers and the complex Lorenz equations–subcritical and supercritical Hopf bifurcations. Phys. Rev. A 41(7), 3826–3837 (1990)

    Article  Google Scholar 

  14. Toronov, V.Y., Derbov, V.L.: Boundedness of attractors in the complex Lorenz model. Phys. Rev. E 55(3), 3689–3692 (1997)

    Article  MathSciNet  Google Scholar 

  15. Zhang, H.G., Liu, Z.W., Huang, G.B., Wang, Z.S.: Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay. IEEE Trans. Neural Netw. 21(1), 91–106 (2010)

    Article  Google Scholar 

  16. Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62(4), 875–882 (2010)

    Article  MATH  Google Scholar 

  17. Liu, Y.J., Wang, W.: Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inf. Sci. 177(18), 3901–3917 (2007)

    Article  MATH  Google Scholar 

  18. Wu, Z.Y., Duan, J.Q., Fu, X.C.: Complex projective synchronization in coupled chaotic complex dynamical systems. Nonlinear Dyn. 69(3), 771–779 (2012)

    Article  Google Scholar 

  19. Liu, Y.J., Zheng, Y.Q.: Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn. 57(3), 431–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Y.J., Chen, C.L.P., Wen, G.X., Tong, S.C.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22(7), 1162–1167 (2011)

    Article  Google Scholar 

  21. Zhang, H.G., Ma, T.D., Huang, G.B., Wang, Z.L.: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40(3), 831–844 (2010)

    Article  Google Scholar 

  22. Liu, Y.J., Wang, W., Tong, S.C., Liu, Y.S.: Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 40(1), 170–184 (2010)

    Article  Google Scholar 

  23. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Symposium on Control, Optimization and Supervision. CESA ’96 IMACS Multiconference. Computational Engineering in Systems Applications, Lille, France, vol. 2, pp. 963–968 (1996)

    Google Scholar 

  24. Fowler, A.C., Gibbon, J.D., McGuinness, M.J.: The complex Lorenz equations. Physica D 4(2), 139–163 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  26. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  27. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Z.W., Zhang, H.G., Zhang, Q.L.: Novel stability analysis for recurrent neural networks with multiple delays via line integral-type L-K functional. IEEE Trans. Neural Netw. 21(11), 1710–1718 (2010)

    Article  Google Scholar 

  29. Zhang, H.G., Liu, D.R., Wang, Z.L.: Controlling Chaos: Suppression, Synchronization and Chaotification, p. 366. Springer, London (2009)

    MATH  Google Scholar 

  30. Wang, X.Y., He, Y.J. Wang, M.J.: Chaos control of a fractional order modified coupled dynamos system. Nonlinear Anal. 71, 6126–6134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Marsden, J.E., McCracken, M.: The Hopf Bifurcation and Its Applications. Springer, New York (1976)

    Book  MATH  Google Scholar 

  32. Wolf, A., Swinney, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rosenstein, M.T., Collins, J.J., De, L.C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos: 61173183, 60973152, and 60573172), the Superior University Doctor Subject Special Scientific Research Foundation of China (No: 20070141014), Program for Liaoning Excellent Talents in University (No: LR2012003), the National Natural Science Foundation of Liaoning province (No: 20082165) and the Fundamental Research Funds for the Central Universities (No: DUT12JB06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, C., Wang, X. Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn 71, 241–257 (2013). https://doi.org/10.1007/s11071-012-0656-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0656-z

Keywords

Navigation