Skip to main content
Log in

Stochastic fractional optimal control of quasi-integrable Hamiltonian system with fractional derivative damping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A stochastic fractional optimal control strategy for quasi-integrable Hamiltonian systems with fractional derivative damping is proposed. First, equations of the controlled system are reduced to a set of partially averaged It\(\hat{o}\) stochastic differential equations for the energy processes by applying the stochastic averaging method for quasi-integrable Hamiltonian systems and a stochastic fractional optimal control problem (FOCP) of the partially averaged system for quasi-integrable Hamiltonian system with fractional derivative damping is formulated. Then the dynamical programming equation for the ergodic control of the partially averaged system is established by using the stochastic dynamical programming principle and solved to yield the fractional optimal control law. Finally, an example is given to illustrate the application and effectiveness of the proposed control design procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gemant, A.: On fractional differentials. Philos. Mag. Ser. 7(25), 540–549 (1938)

    Google Scholar 

  2. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)

    Article  MATH  Google Scholar 

  3. Bagley, R.L., Torvik, P.J.: Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)

    Article  MATH  Google Scholar 

  4. Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23(6), 918–925 (1985)

    Article  MATH  Google Scholar 

  5. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. ASME J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Makris, N., Constaninou, M.C.: Fractional-derivative maxwell model for viscous dampers. J. Struct. Eng. 117(9), 2708–2724 (1991)

    Article  Google Scholar 

  7. Coronado, A., Trindade, M.A., Sampaio, R.: Frequency-dependent viscoelastic models for passive vibration isolation systems. Shock Vib. 9, 253–264 (2002)

    Google Scholar 

  8. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)

    Article  Google Scholar 

  9. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63, 010801 (2010)

    Article  Google Scholar 

  10. Thomas, J.A.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994)

    Article  Google Scholar 

  11. Oustaloup, A.: Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation. IEEE Trans. Circuits Syst. 28(10), 1007–1009 (1981)

    Article  Google Scholar 

  12. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ozaktas, H.M., Arikan, O., Kutay, M.A., Bozdagt, G.: Digital computation of the fractional fourier transform. IEEE Trans. Signal Process. 44(9), 2141–2150 (1996)

    Article  Google Scholar 

  14. Tustin, A., Allanson, J.T., Layton, J.M., Jakeways, R.J.: The design of systems for automatic control of the position of massive objects. Proc. Inst. Electr. Eng. 105-C(1), 1–57 (1958)

    Google Scholar 

  15. Manabe, S.: The non-integer integral and its application to control systems. JIEE J. 80(860), 589–597 (1960)

    Google Scholar 

  16. Podlubny, I.: Fractional-order systems and PI λ D μ-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Monje, C.A., Vinagre, B.M., Chen, Y.Q., Feliu, V., Lanusse, P., Sabatier, J.: Proposals for fractional PI λ D μ tuning. In: First IFAC Workshop on Fractional Differentiation and Its Applications, Bordeaux (2004)

    Google Scholar 

  18. Luo, Y., Chen, Y.Q.: Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica 45, 2446–2450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo, Y., Chen, Y.Q., Wang, C.Y., Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20, 823–831 (2010)

    Article  Google Scholar 

  20. Li, H.S., Luo, Y., Chen, Y.Q.: A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. Control Syst. Technol. 18(2), 516–520 (2010)

    Article  Google Scholar 

  21. Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)

    Article  MATH  Google Scholar 

  23. Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13, 1269–1281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Agrawal, O.P.: A quadratic numerical scheme for fractional optimal control problems. J. Dyn. Syst. Meas. Control 130, 011010 (2008)

    Article  Google Scholar 

  25. Baleanu, D., Defterli, O., Agrawal, O.P.: A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 15(4), 583–597 (2009)

    Article  MathSciNet  Google Scholar 

  26. Tricaud, C., Chen, Y.Q.: An approximate method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl. 59, 1644–1655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Machado, J.A.T.: Optimal tuning of fractional controllers using genetic algorithms. Nonlinear Dyn. 62, 447–452 (2010)

    Article  MATH  Google Scholar 

  28. Jumarie, G.: Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function. J. Appl. Math. Comput. 23, 215–228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gaul, L., Klein, P., Kemple, S.: Impulse response function of an oscillator with fractional derivative in damping description. Mech. Res. Commun. 16(5), 297–305 (1989)

    Article  Google Scholar 

  30. Kempfle, S., Schäfer, I., Beyer, H.: Fractional calculus via functional calculus: theory and applications. Nonlinear Dyn. 29, 99–127 (2002)

    Article  MATH  Google Scholar 

  31. Schäfer, I., Kempfle, S.: Impulse responses of fractional damped system. Nonlinear Dyn. 38, 61–68 (2004)

    Article  MATH  Google Scholar 

  32. Koh, C.G., Kelly, J.M.: Application of fractional derivatives to seismic analysis of base-isolated models. Earthquake Eng. Struct. Dyn. 19(2), 229–241 (1990)

    Article  Google Scholar 

  33. Shokooh, A., Suarez, L.: A comparison of numerical methods applied to a fractional model of damping materials. J. Vib. Control 5, 331–354 (1999)

    Article  Google Scholar 

  34. Suarez, L., Shokooh, A.: An eigenvector expansion method for the solution of motion containing fractional derivatives. ASME J. Appl. Mech. 64, 629–635 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, G.G., Zhu, Z.Y., Cheng, C.J.: Dynamical stability of viscoelastic column with fractional derivative constitutive relation. ASME Appl. Math. Mech. 22, 294–303 (2001)

    Article  MATH  Google Scholar 

  36. Wahi, P., Chatterjee, A.: Averaging oscillations with small fractional damping and delayed terms. Nonlinear Dyn. 38, 3–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ray, S.S., Poddar, B.P., Bera, R.K.: Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method. ASME J. Appl. Mech. 72, 290–295 (2005)

    Article  MATH  Google Scholar 

  38. Drăgănescu, G.E.: Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives. J. Math. Phys. 47(8), 082902 (2006)

    Article  MathSciNet  Google Scholar 

  39. Padovan, J., Sawicki, J.: Nonlinear vibrations of fractionally damped systems. Nonlinear Dyn. 16, 321–336 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Spanos, P.D., Zeldin, B.A.: Random vibration of systems with frequency-dependent parameters or fractional derivatives. J. Eng. Mech. 123, 290–292 (1997)

    Article  Google Scholar 

  41. Agrawal, O.P.: Stochastic analysis of a 1-D system with fractional damping of order 1/2. ASME J. Vib. Acoust. 124, 454–460 (2002)

    Article  Google Scholar 

  42. Agrawal, O.P.: Analytical solution for stochastic response of a fractionally damped beam. ASME J. Vib. Acoust. 126, 561–566 (2004)

    Article  Google Scholar 

  43. Huang, Z.L., Jin, X.L.: Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative. J. Sound Vib. 319, 1121–1135 (2009)

    Article  Google Scholar 

  44. Chen, L.C., Zhu, W.Q.: Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations. Nonlinear Dyn. 56, 231–241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Huang, Z.L., Jin, X.L., Lim, C.W., Wang, Y.: Statistical analysis for stochastic systems including fractional derivatives. Nonlinear Dyn. 59, 339–349 (2010)

    Article  MATH  Google Scholar 

  46. Di Paola, M., Failla, G., Pirrotta, A.: Stationary and non-stationary stochastic response of linear fractional viscoelastic systems. Probab. Eng. Mech. 28, 85–90 (2012)

    Article  Google Scholar 

  47. Xu, Z., Cheung, Y.K.: Averaging method using generalized harmonic functions for strongly non-linear oscillators. J. Sound Vib. 174(4), 563–576 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stratonovich, R.L.: Topics in the Theory of Random Noise. Gordon Breach, New York (1963)

    Google Scholar 

  49. Khasminskii, R.Z.: A limit theorem for the solutions of differential equations with random right-hand sides. Theory Probab. Appl. 11, 390–406 (1966)

    Article  Google Scholar 

  50. Zhu, W.Q., Huang, Z.L., Yang, Y.Q.: Stochastic averaging of quasi-integrable-Hamiltonian systems. ASME J. Appl. Mech. 64, 975–984 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kushner, J.: Optimality conditions for the average cost per unit time problem with a diffusion model. SIAM J. Control Optim. 16, 330–346 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work reported in this paper was supported by the National Natural Science Foundation of China under Grant Nos. 10932009, 11072212, and 11002059, the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20103501120003, the Fujian Province Natural Science Foundation of China under Grant No. 2010J05006, and the Fundamental Research Funds for Huaqiao University under Grant No. JB-SJ1010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Q. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, F., Zhu, W.Q. & Chen, L.C. Stochastic fractional optimal control of quasi-integrable Hamiltonian system with fractional derivative damping. Nonlinear Dyn 70, 1459–1472 (2012). https://doi.org/10.1007/s11071-012-0547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0547-3

Keywords

Navigation