Skip to main content
Log in

Dynamical analysis in a 4D hyperchaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Inspirited by Li and Jin (Nonlinear Dyn. 67:2857–2864 2012), this paper investigates the Hopf bifurcation of a four-dimensional hyperchaotic system with only one equilibrium. A detailed set of conditions are derived, which guarantee the existence of the Hopf bifurcation. Furthermore, the standard normal form theory is applied to determine the direction and type of the Hopf bifurcation, and the approximate expressions of bifurcating periodic solutions and their periods. In addition, numerical simulations are used to justify theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li, F., Jin, Y.: Hopf bifurcation analysis and numerical simulation in a 4D-hyperchaotic system. Nonlinear Dyn. 67, 2857–2864 (2012)

    Article  MATH  Google Scholar 

  2. Li, X., Ou, Q.: Dynamical properties and simulation of a new Lorenz-like chaotic system. Nonlinear Dyn. 65, 255–270 (2011)

    Article  MathSciNet  Google Scholar 

  3. Wang, Z., Qi, G., Sun, Y., van Wyk, B.J., van Wyk, M.A.: A new type of four-wing chaotic attractors in 3-D quadratic autonomous systems. Nonlinear Dyn. 60, 443–457 (2010)

    Article  MATH  Google Scholar 

  4. Wang, L., Ni, Q.: Hopf bifurcation and chaotic motions of a tubular cantilever subject to cross flow and loose support. Nonlinear Dyn. 59, 329–338 (2010)

    Article  MATH  Google Scholar 

  5. Agiza, H.N. Yassen: M. T.: Synchronization of Rossler and Chen chaotic dynamical systems using active control. Phys. Lett. A 278, 191–197 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos Appl. Sci. Eng. 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, G., Ueta, T.: Bifurcation analysis of Chen’s equation. Int. J. Bifurc. Chaos Appl. Sci. Eng. 10, 1917–1931 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Celikovsky, S., Chen, G.: On a generalized Lorenz canonical form of chaotic systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12, 1789–1812 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goedgebuer, J.P., Larger, L., Port, H.: Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback laser diode. Phys. Rev. Lett. 80, 2249–2252 (1998)

    Article  Google Scholar 

  10. Goedgebuer, J.P., Levy, P., Chen, C.C.: Optical Communications with synchronized hyperchaos generated electro-optical. IEEE J. Quantum Electron. 38, 1178–1183 (2002)

    Article  Google Scholar 

  11. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  12. Kapitaniak, T., Chua, L.O.: Hyperchaotic attractor of unidirectionally coupled Chua’s circuit. Int. J. Bifurc. Chaos Appl. Sci. Eng. 4, 477–482 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, Y., Yang, Q.: Dynamics of a new Lorenzlike chaotic system. Nonlinear Anal., Real World Appl. 11, 2563–2572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ning, C., Haken, H.: Detuned lasers and the complex Lorenz equations: Subcritical and super-critical Hopf bifurcations. Phys. Rev. A 41, 3826–3837 (1990)

    Article  Google Scholar 

  15. Rossler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)

    Article  MathSciNet  Google Scholar 

  16. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, New York (1998)

    Google Scholar 

  17. Thamilmaran, K., Lakshmanan, M., Venkatesan, A.: A hyperchaos in a modified canonical Chuas circuit. Int. J. Bifurc. Chaos Appl. Sci. Eng. 14, 221–243 (2004)

    Article  MATH  Google Scholar 

  18. Udaltsov, V.S., et al.: Communicating with hyper-chaos: The dynamics of a DNLF emitter and recovery of transmitted information. Opt. Spectrosc. 95(1), 114–118 (2003)

    Article  MathSciNet  Google Scholar 

  19. Yang, Q., Chen, G.: A chaotic system with one saddle and its canonical form. Int. J. Bifurc. Chaos Appl. Sci. Eng. 18, 1393–1414 (2008)

    Article  MATH  Google Scholar 

  20. Yang, Q., Chen, G., Zhou, Y.: A unified Lorenz-type system and its canonical form. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16, 2855–2871 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu, X., Xia, Y.: Detecting unstable periodic orbits in Chen’s chaotic attractor. Int. J. Bifurc. Chaos Appl. Sci. Eng. 10, 1987–1991 (2000)

    Google Scholar 

  22. Zhong, G., Tang, K.: Circuitry implementation and synchronization of Chen’s attractor. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12, 1423–1427 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Li.

Additional information

This research was partially supported by the Nature Science Foundation of Shandong Province (ZR2012AL04).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H. Dynamical analysis in a 4D hyperchaotic system. Nonlinear Dyn 70, 1327–1334 (2012). https://doi.org/10.1007/s11071-012-0536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0536-6

Keywords

Navigation