Skip to main content
Log in

The Fast Norm Vector Indicator (FNVI) method: a new dynamical parameter for detecting order and chaos in Hamiltonian systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present article, we introduce and also deploy a new, simple, very fast, and efficient method, the Fast Norm Vector Indicator (FNVI) in order to distinguish rapidly and with certainty between ordered and chaotic motion in Hamiltonian systems. This distinction is based on the different behavior of the FNVI for the two cases: the indicator after a very short transient period of fluctuation displays a nearly constant value for regular orbits, while it continues to fluctuate significantly for chaotic orbits. In order to quantify the results obtained by the FNVI method, we establish the dFNVI, which is the quantified numerical version of the FNVI. A thorough study of the method’s ability to achieve an early and clear detection of an orbit’s behavior is presented both in two and three degrees of freedom (2D and 3D) Hamiltonians. Exploiting the advantages of the dFNVI method, we demonstrate how one can rapidly identify even tiny regions of order or chaos in the phase space of Hamiltonian systems. The new method can also be applied in order to follow the time evolution of sticky orbits. A detailed comparison between the new FNVI method and some other well-known dynamical methods of chaos detection reveals the great efficiency and the leading role of this new dynamical indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Arribas, M., Elipe, A., Floria, L., Riaguas, A.: Oscillators in resonance p:q:r. Chaos Solitons Fractals 27, 1220–1228 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems—a method for computing all of them, I. Theory, II. Numerical application. Meccanica 15, 9–30 (1980)

    Article  MATH  Google Scholar 

  3. Caranicolas, N.D., Zotos, E.E.: Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits. Nonlinear Dyn. 69, 1795–1805 (2012)

    Article  Google Scholar 

  4. Cincotta, P.M., Simó, C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials, I. Astron. Astrophys. Suppl. Ser. 147, 205–228 (2000)

    Article  Google Scholar 

  5. Cincotta, P.M., Giordano, C.M., Simó, C.: Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Physica D 182, 151–178 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Contopoulos, G., Grousousakou, E., Voglis, N.: Invariant spectra in Hamiltonian systems. Astron. Astrophys. 304, 374–380 (1995)

    Google Scholar 

  7. Elipe, A., Deprit, A.: Oscillators in resonance. Mech. Res. Commun. 26, 635–640 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Froeschlé, C., Lega, E., Gonczi, R.: Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62 (1997)

    Article  MATH  Google Scholar 

  9. Froeschlé, C., Gonczi, R., Lega, E.: The fast Lyapunov indicator: a simple tool to detect weak chaos. Application to the structure of the main asteroidal belt. Planet. Space. Sci. 45, 881–886 (1997)

    Article  Google Scholar 

  10. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 460, 603–611 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Howard, J.E.: Discrete virial theorem. Celest. Mech. Dyn. Astron. 92, 219–241 (2005)

    Article  MATH  Google Scholar 

  12. Karanis, G.I., Vozikis, Ch.L.: Fast detection of chaotic behavior in galactic potentials. Astron. Nachr. 329, 403–412 (2008)

    Article  Google Scholar 

  13. Kotoulas, T., Voyatzis, G.: Comparative study of the 2:3 and 3:4 resonant motion with Neptune: an application of symplectic mappings and low frequency analysis. Celest. Mech. Dyn. Astron. 88, 343–363 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Laskar, J.: The chaotic motion of the solar system—a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990)

    Article  Google Scholar 

  15. Laskar, J.: Hamiltonian Systems with Three or More Degrees of Freedom, p. 134. Plenum, New York (1999)

    Book  Google Scholar 

  16. Laskar, J., Froeschlé, C., Celletti, A.: The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping. Physica D 56, 253–269 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lieberman, M.A., Lichtenberg, A.J.: Regular and Chaotic Dynamics. Springer, Berlin (1992)

    MATH  Google Scholar 

  18. Meiss, J.D.: Symplectic maps, variational principles, and transport. Rev. Mod. Phys. 64, 795–848 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Papaphilippou, Y., Laskar, J.: Frequency map analysis and global dynamics in a galactic potential with two degrees of freedom. Astron. Astrophys. 307, 427–449 (1996)

    Google Scholar 

  20. Papaphilippou, Y., Laskar, J.: Global dynamics of triaxial galactic models through frequency map analysis. Astron. Astrophys. 329, 451–481 (1998)

    Google Scholar 

  21. Patsis, P.A., Efthymiopoulos, C., Contopoulos, G., Voglis, N.: Dynamical spectra of barred galaxies. Astron. Astrophys. 326, 493–500 (1997)

    Google Scholar 

  22. Saito, N., Ichimura, A.: In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems. Lecture Notes in Physics, vol. 93, p. 137. Springer, Berlin (1979)

    Chapter  Google Scholar 

  23. Sándor, Zs., Érdi, B., Széll, A., Funk, B.: The relative Lyapunov indicator: an efficient method of chaos detection. Celest. Mech. Dyn. Astron. 90, 127–138 (2004)

    Article  MATH  Google Scholar 

  24. Sideris, I.V.: In: Gottesman, S.T., Buchler, J.-R., et al. (eds.) Nonlinear Dynamics in Astronomy and Astrophysics. Annals of the New York Academy of Science, vol. 1045. The New York Academy of Sciences, New York (2005)

    Google Scholar 

  25. Skokos, Ch.: Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A 34, 10029–10043 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Skokos, Ch., Antonopoulos, Ch., Bountis, T.C., Vrahatis, M.N.: Detecting order and chaos in Hamiltonian systems by the SALI method. J. Phys. A 37, 6269–6284 (2004)

    Article  MathSciNet  Google Scholar 

  27. Skokos, Ch., Bountis, T.C., Antonopoulos, Ch.: Geometrical properties of local dynamics in Hamiltonian systems: the generalized alignment index (GALI) method. Physica D 231, 30–54 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Voglis, N., Contopoulos, G.: Invariant spectra of orbits in dynamical systems. J. Phys. A 27, 4899–4912 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Voyatzis, G., Ichtiaroglou, S.: On the spectral analysis of trajectories in near-integrable Hamiltonian systems. J. Phys. A 25, 5931–5943 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vozikis, Ch.L., Varvoglis, H., Tsiganis, K.: The power spectrum of geodesic divergences as an early detector of chaotic motion. Astron. Astrophys. 359, 386–396 (2000)

    Google Scholar 

  31. Vrahatis, M.N., Bountis, T.C., Kollmann, M.: Periodic orbits and invariant surfaces in 4-D nonlinear mappings. Int. J. Bifurc. Chaos 6, 1425–1437 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vrahatis, M.N., Isliker, H., Bountis, T.C.: Structure and breakdown of invariant tori in a 4-D mapping model of accelerator dynamics. Int. J. Bifurc. Chaos 7, 2707–2722 (1997)

    Article  MATH  Google Scholar 

  33. Zotos, E.E.: A new dynamical model for the study of galactic structure. New Astron. 16, 391–401 (2011)

    Article  Google Scholar 

  34. Zotos, E.E.: A new dynamical parameter for the study of sticky orbits in a 3D galactic model Baltic. Astronomy 20, 339–354 (2011)

    Google Scholar 

  35. Zotos, E.E.: Application of new dynamical spectra of orbits in Hamiltonian systems. Nonlin. Dyn. 69, 2041–2063 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to express my warmest thanks to Dr. D.D. Carpintero for all the illuminating and creative discussions during this research. The author would also like to thank the two anonymous referees for the careful reading of the manuscript and for their very useful and aptly suggestions and comments which allowed us to improve significantly the quality and the clarity of the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euaggelos E. Zotos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zotos, E.E. The Fast Norm Vector Indicator (FNVI) method: a new dynamical parameter for detecting order and chaos in Hamiltonian systems. Nonlinear Dyn 70, 951–978 (2012). https://doi.org/10.1007/s11071-012-0504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0504-1

Keywords

Navigation