Skip to main content
Log in

Two modes nonresonant interaction for rectangular plate with geometrical nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The vibrations of thin rectangular plate with geometrical nonlinearity are analyzed. The models of plate vibrations with different numbers of degrees-of-freedom are derived. It is deduced that two degrees-of-freedoms are enough to describe low-frequency nonlinear dynamics of plates. Nonlinear normal modes are used to analyze the system dynamics. If vibrations amplitudes are increased, single-mode plate vibrations are transformed into two mode ones. In this case, internal resonance conditions are not observed. Such transformation of vibration is described using Kauderer–Rosenberg nonlinear normal modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leissa, A.W.: Vibrations of Plates. US Government Printing Office, Washington (1969)

    Google Scholar 

  2. Chu, H.-N., Herrmann, G.: Influence of large amplitude on free flexural vibrations of rectangular elastic plates. J. Appl. Mech. 23, 532–540 (1956)

    MathSciNet  MATH  Google Scholar 

  3. Ribeiro, P., Petyt, M.: Geometrical non-linear, steady state, forced, periodic vibration of plates, part II: stability study and analysis of multi-modal response. J. Sound Vib. 226, 985–1010 (1999)

    Article  Google Scholar 

  4. Ribeiro, P., Petyt, M.: Non-linear free vibration of isotropic plates with internal resonance. Int. J. Non-Linear Mech. 35, 263–278 (2000)

    Article  MATH  Google Scholar 

  5. Kheradmandia, K., Azhari, M., Bradford, M.A.: Local instability and free vibration of supported plates using the basic plate triangle. Comput. Mech. 40, 73–84 (2007)

    Article  MATH  Google Scholar 

  6. Kurpa, L.V., Masur, O.S.: Studying the nonlinear vibrations of statically compressed plates. Int. Appl. Mech. 12, 1421–1429 (2006)

    Article  Google Scholar 

  7. Avramov, K.V., Tyshkovets, O., Maksymenko-Sheyko, K.V.: Nonlinear dynamics of circular plates with cutouts. R-function method. ASME J. Vib. Acoust. 132, 205–212 (2010)

    Article  Google Scholar 

  8. Lewandowski, R.: On beams, membranes and plates vibration backbone curves in cases of internal resonance. Meccanica 31, 323–346 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Awrejcewicz, J., Krysko, V.A.: Feigenbaum scenario exhibited by thin plate dynamics. Nonlinear Dyn. 24, 373–398 (2001)

    Article  MATH  Google Scholar 

  10. Awrejcewicz, J., Krysko, V.A., Narkaitis, G.G.: Bifurcations of a thin plate-strip excited transversally and axially. Nonlinear Dyn. 32, 187–209 (2003)

    Article  MATH  Google Scholar 

  11. Zarubinskaya, M.A., van Horssen, W.T.: On the vibrations of a simply supported square plate on a weakly nonlinear elastic foundation. Nonlinear Dyn. 40, 35–60 (2005)

    Article  MATH  Google Scholar 

  12. El Bikri, K., Benamar, R., Bennouna, M.: Geometrically non-linear free vibrations of clamped simply supported rectangular plates. Part I: the effects of large vibration amplitudes on the fundamental mode shape. Comput. Struct. 81, 2029–2043 (2003)

    Article  Google Scholar 

  13. Beidouri, Z., Benamar, R., El Kadiri, M.: Geometrically non-linear transverse vibrations of C-S-S-S and C-S-C-S rectangular plates. Int. J. Non-Linear Mech. 41, 57–77 (2006)

    Article  MATH  Google Scholar 

  14. Touzé, C., Thomas, O., Chaigne, A.: Asymmetric non-linear forced vibrations of free-edge circular plates, part I: theory. J. Sound Vib. 258, 649–676 (2002)

    Article  Google Scholar 

  15. Touzé, C., Thomas, O., Amabili, M.: Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates. Int. J. Non-Linear Mech. 46, 234–246 (2011)

    Article  Google Scholar 

  16. Amabili, M.: Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments. Comput. Struct. 52, 2587–2605 (2004)

    Article  Google Scholar 

  17. Amabili, M.: Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections. J. Sound Vib. 291, 539–565 (2006)

    Article  Google Scholar 

  18. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  19. Amabili, M., Carra, S.: Thermal effects on geometrically nonlinear vibrations of rectangular plates with fixed edges. J. Sound Vib. 321, 936–954 (2009)

    Article  Google Scholar 

  20. Amabili, M.: Geometrically nonlinear vibrations of rectangular plates carrying a concentrated mass. J. Sound Vib. 329, 4501–4514 (2010)

    Article  Google Scholar 

  21. Amabili, M., Farhadi, S.: Shear deformable versus classical theories for nonlinear vibrations of rectangular isotropic and laminated composite plates. J. Sound Vib. 320, 649–667 (2009)

    Article  Google Scholar 

  22. Moussaoui, F., Benamar, R.: Non-linear vibrations of shell-type structures: a review with bibliography. J. Sound Vib. 255, 161–184 (2002)

    Article  Google Scholar 

  23. Shaw, S.W., Pierre, C.: Normal modes for nonlinear vibratory systems. J. Sound Vib. 164, 58–124 (1993)

    Article  MathSciNet  Google Scholar 

  24. Jiang, D., Pierre, C., Shaw, S.W.: The construction of non-linear normal modes for systems with internal resonance. Int. J. Non-Linear Mech. 40, 729–746 (2005)

    Article  MATH  Google Scholar 

  25. Vakakis, A.F., Manevich, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley-Interscience, New York (1996)

    Book  MATH  Google Scholar 

  26. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, Part I: A useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23, 170–194 (2009)

    Article  Google Scholar 

  27. Mihlin, Y.V., Avramov, K.V.: Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments. Appl. Mech. Rev. 63(6), 060802 (2010)

    Article  Google Scholar 

  28. Breslavsky, I.D., Avramov, K.V.: Nonlinear modes of cylindrical panels with complex boundaries. R-function method. Meccanica 46, 817–832 (2011)

    Article  MathSciNet  Google Scholar 

  29. Breslavsky, I.D., Strel’nikova, E.A., Avramov, K.V.: Dynamics of shallow shells with geometrical nonlinearity interacting with fluid. Comput. Struct. 89, 496–506 (2011)

    Article  Google Scholar 

  30. Avramov, K.V., Mikhlin, Yu.: Snap-through truss as a vibration absorber. J. Vib. Control 10, 291–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Breslavsky, I., Avramov, K.V., Mikhlin, Yu., Kochurov, R.: Nonlinear modes of snap-through motions of a shallow arch. J. Sound Vib. 311, 297–313 (2008)

    Article  Google Scholar 

  32. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  33. Chia, C.Y.: Non-linear Analysis of Plates. McGraw-Hill, New York (1980)

    Google Scholar 

  34. Pesheck, E., Pierre, C., Shaw, S.W.: Accurate reduced-order models for a simple rotor blade model using nonlinear normal modes. Math. Comput. Model. 33, 1085–1097 (2001)

    Article  MATH  Google Scholar 

  35. Pesheck, E., Pierre, C., Shaw, S.W.: A new Galerkin-based approach for accurate nonlinear normal modes through invariant manifold. J. Sound Vib. 249, 971–993 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yakubovich, V.A., Starzhinskii, V.M.: Linear Differential Equations with Periodic Coefficients. Wiley, New York (1975)

    MATH  Google Scholar 

  37. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Avramov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breslavsky, I.D., Avramov, K.V. Two modes nonresonant interaction for rectangular plate with geometrical nonlinearity. Nonlinear Dyn 69, 285–294 (2012). https://doi.org/10.1007/s11071-011-0264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0264-3

Keywords

Navigation