Skip to main content
Log in

The jump phenomenon effect on the sound absorption of a nonlinear panel absorber and sound transmission loss of a nonlinear panel backed by a cavity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Theoretical analysis of the nonlinear vibration effects on the sound absorption of a panel absorber and sound transmission loss of a panel backed by a rectangular cavity is herein presented. The harmonic balance method is employed to derive a structural acoustic formulation from two-coupled partial differential equations representing the nonlinear structural forced vibration and induced acoustic pressure; one is the well-known von Karman’s plate equation and the other is the homogeneous wave equation. This method has been used in a previous study of nonlinear structural vibration, in which its results agreed well with the elliptic solution. To date, very few classical solutions for this nonlinear structural-acoustic problem have been developed, although there are many for nonlinear plate or linear structural-acoustic problems. Thus, for verification purposes, an approach based on the numerical integration method is also developed to solve the nonlinear structural-acoustic problem. The solutions obtained with the two methods agree well with each other. In the parametric study, the panel displacement amplitude converges with increases in the number of harmonic terms and acoustic and structural modes. The effects of excitation level, cavity depth, boundary condition, and damping factor are also examined. The main findings include the following: (1) the well-known “jump phenomenon” in nonlinear vibration is seen in the sound absorption and transmission loss curves; (2) the absorption peak and transmission loss dip due to the nonlinear resonance are significantly wider than those in the linear case because of the wider resonant bandwidth; and (3) nonlinear vibration has the positive effect of widening the absorption bandwidth, but it also degrades the transmission loss at the resonant frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, Y.Y., Ng, C.F., Guo, X.Y.: Nonlinear random response of cylindrical panels to acoustic excitations using finite element modal method. Nonlinear Dyn. 31(3), 327–345 (2003)

    Article  MATH  Google Scholar 

  2. Rudenko, O.V., Hedberg, C.M.: Interaction between low and high-frequency modes in a nonlinear system: Gas-filled cylinder covered by a movable piston. Nonlinear Dyn. 32(4), 405–416 (2003)

    Article  MATH  Google Scholar 

  3. Rudenko, O.V., Hedberg, C.M.: Nonlinear dynamics of grains in a liquid-saturated soil. Nonlinear Dyn. 32(5), 187–200 (2004)

    Article  Google Scholar 

  4. Bissinger, G.: Structural-acoustics model of the violin radiativity profile. J. Acoust. Soc. Am. 124(6), 4013–4023 (2008)

    Article  Google Scholar 

  5. Craster, R.V., Smith, S.G.L.: A class of expansion functions for finite elastic plates in structural acoustics. J. Acoust. Soc. Am. 106(6), 3128–3134 (1999)

    Article  Google Scholar 

  6. Lee, Y.Y., Ng, C.F.: Sound insertion loss of stiffened enclosure plates using the finite element method and the classical approach. J. Sound Vib. 217(2), 239–260 (1998)

    Article  Google Scholar 

  7. Ford, R.D., McCormick, M.A.: Panel sound absorbers. J. Sound Vib. 10(3), 411–423 (1969)

    Article  Google Scholar 

  8. Bies, D.A., Hansen, C.H.: Engineering Noise Control: Theory and Practice. Spon, London (1988)

    Book  Google Scholar 

  9. Sakagami, K., Takahashi, D., Gen, H., Morimoto, M.: Acoustic properties of an infinite elastic plate with a back cavity. Acustica 78, 288–295 (1993)

    MATH  Google Scholar 

  10. Frommhold, W., Fuchs, H.V., Sheng, S.: Acoustic performance of membrane absorbers. J. Sound Vib. 170(5), 621–636 (1994)

    Article  Google Scholar 

  11. Sakagami, K., Kiyama, M., Morimoto, M., Takahashi, D.: Sound absorption of a cavity-backed membrane: a step towards design method for membrane-type absorbers. Appl. Acoust. 49, 237–249 (1996)

    Article  Google Scholar 

  12. Nakanishi, S., Sakagami, K., Daido, M., Morimoto, M.: Effect of an air-back cavity on the sound field reflected by a vibrating plate. Appl. Acoust. 56, 241–256 (1999)

    Article  Google Scholar 

  13. Lyon, R.H.: Noise reduction of rectangular enclosures with one flexible wall. J. Acoust. Soc. Am. 35, 1791–1797 (1963)

    Article  Google Scholar 

  14. Pretlove, A.J.: Free vibrations of a rectangular panel backed by a closed rectangular cavity. J. Sound Vib. 2(3), 197–209 (1965)

    Article  Google Scholar 

  15. Oldham, D.J., Hillarby, S.N.: The acoustical performance of small close fitting enclosures. Part I. Theoretical models. J. Sound Vib. 150(2), 261–281 (1991)

    Article  Google Scholar 

  16. Pan, J., Elliott, S.J., Baek, K.H.: Analysis of low frequency acoustic response in a damped rectangular enclosure. J. Sound Vib. 223(4), 543–566 (1999)

    Article  Google Scholar 

  17. Shi, Y., Lee, R.Y.Y., Mei, C.: Finite element method for nonlinear free vibration of composite plates. AIAA J. 35(1), 159–166 (1997)

    Article  MATH  Google Scholar 

  18. Sathyamoorthy, M.: Nonlinear vibration analysis of plates: a review and survey of current developments. Appl. Mech. Rev. 40(11), 1553–1561 (1987)

    Article  Google Scholar 

  19. Fu, Y.M., Chia, C.Y.: Multi-mode nonlinear vibration and postbuckling of anti-symmetric imperfect angle-ply cylindrical thick panels. Int. J. Non-Linear Mech. 24(5), 365–381 (1989)

    Article  MATH  Google Scholar 

  20. Sridhar, S., Mook, D.T., Nayfeh, A.H.: Nonlinear resonances in the forced responses of plates, part 1: symmetric responses of circular plates. J. Sound Vib., 41(3), 359–373 (1975)

    Article  MATH  Google Scholar 

  21. Chen, C.S., Fung, C.P., Chien, R.D.: Nonlinear vibration of an initially stressed laminated plate according to a higher-order theory. Compos. Struct. 77(4), 521–532 (2007)

    Article  Google Scholar 

  22. Chen, C.S., Chen, T.J., Chien, R.D.: Nonlinear vibration of initially stressed functionally graded plates. Thin-Walled Struct. 44(8), 844–851 (2006)

    Article  Google Scholar 

  23. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    Article  Google Scholar 

  24. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  25. Lee, Y.Y.: Structural-acoustic coupling effect on the nonlinear natural frequency of a rectangular box with one flexible plate. Appl. Acoust., 63(11), 1157–1175 (2002)

    Article  Google Scholar 

  26. Lee, Y.Y., Su, R.K.L., Ng, C.F., Hui, C.K.: The effect of the modal energy transfer on the sound radiation and vibration of a curved panel: theory and experiment. J. Sound Vib. 324, 1003–1015 (2009)

    Article  Google Scholar 

  27. Wei, Y., Vaicaitis, R.: Nonlinear models for double-wall systems for vibrations and noise control. J. Aircr. 34(6), 802–810 (1997)

    Article  Google Scholar 

  28. Srirangarajan, H.R.: Nonlinear free vibrations of uniform beams. J. Sound Vib. 175(3), 425–427 (1994)

    Article  MATH  Google Scholar 

  29. Lee, Y.Y.: Structural-acoustic analysis of close-fitting enclosures. M.Phil. Thesis, Department of Civil and Structural Engineering, The Hong Kong Polytechnic University (1995)

  30. Chu, H.N., Herrmann, G.: Influence of large amplitudes on free flexural vibrations of rectangular elastic plates. J. Appl. Mech. 23, 523–540 (1956)

    MathSciNet  Google Scholar 

  31. Cai, X.C., Liu, J.F.: Application of the modified frequency formulation to a nonlinear oscillator. Comput. Math. Appl. 61(8), 2237–2240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen, G.H., Tao, Z.L., Min, J.Z.: Notes on a conservative nonlinear oscillator. Comput. Math. Appl. 61(8), 2120–2122 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fu, Y., Zhang, J., Wan, L.: Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS). Curr. Appl. Phys. 11(3), 482–485 (2011)

    Article  Google Scholar 

  34. Younesian, D., Askari, H., Saadatnia, Z., Yildirim, A.: Periodic solutions for the generalized nonlinear oscillators containing fraction order elastic force. Int. J. Nonlinear Sci. Numer. Simul. 11(12), 1027–1032 (2011)

    Article  Google Scholar 

  35. Zhong, T., Zhang, J.: Frequency-amplitude relationship for nonlinear oscillator with discontinuity. Math. Comput. Appl. 15(5), 930–935 (2010)

    MathSciNet  Google Scholar 

  36. Yazdi, M.K., Khan, Y., Madani, M., Askari, H., Saadatnia, Z., Yildirim, A.: Analytical solutions for autonomous conservative nonlinear oscillator. Int. J. Nonlinear Sci. Numer. Simul. 11(11), 975–980 (2010)

    Article  Google Scholar 

  37. Yildirim, A., Saadatnia, Z., Askari, H.: Application of the Hamiltonian approach to nonlinear oscillators with rational and irrational elastic terms. Math. Comput. Model. 54(1–2), 697–703 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yildirim, A.: Determination of periodic solutions for nonlinear oscillators with fractional powers by He’s modified Lindstedt–Poincaré method. Meccanica 45(1), 1–6 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Herisanu, N., Marinca, V.: A modified variational iteration method for strongly nonlinear problems. Nonlinear Sci. Lett. A, Math. Phys. Mech. 1, 183–192 (2010)

    Google Scholar 

  40. Marinca, V., Herisanu, N.: Optimal homotopy perturbation method for strongly nonlinear differential equations. Nonlinear Sci. Lett. A, Math. Phys. Mech. 1, 273–280 (2010)

    Google Scholar 

  41. Marinca, V., Herisanu, N.: Explicit and exact solutions to cubic Duffing and double-well Duffing equations. Math. Comput. Model., 53(5–6), 604–609 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Marinca, V., Herisanu, N.: Periodic solutions for some strongly nonlinear oscillations by He’s variational iteration method. Comput. Math. Appl. 54(7–8), 1188–1196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Akbarzade, M., Langari, J.: Determination of natural frequencies by coupled method of homotopy perturbation and variational method for strongly nonlinear oscillators. J. Math. Phys. 52, 023518 (2011)

    Article  MathSciNet  Google Scholar 

  44. Lee, Y.Y., Lee, E.W.M., Ng, C.F.: Sound absorption of a finite flexible micro-perforated panel backed by an air cavity. J. Sound Vib. 287, 227–243 (2005)

    Article  Google Scholar 

  45. He, J.H.: New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B 20(18), 2561–2568 (2006)

    Article  Google Scholar 

  46. He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006)

    Article  MATH  Google Scholar 

  47. He, J.H.: Variational approach for nonlinear oscillators. Chaos Solitons Fractals 34(5), 1430–1439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. He, J.H.: Max-min approach to nonlinear oscillators. Int. J. Nonlinear Sci. Numer. Simul. 9(2), 207–210 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.Y., Li, Q.S., Leung, A.Y.T. et al. The jump phenomenon effect on the sound absorption of a nonlinear panel absorber and sound transmission loss of a nonlinear panel backed by a cavity. Nonlinear Dyn 69, 99–116 (2012). https://doi.org/10.1007/s11071-011-0249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0249-2

Keywords

Navigation