Skip to main content
Log in

Spatiotemporal dynamics of a predator–prey model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Spatial component of ecological interactions has been identified as an important factor in how ecological communities are shaped. In this paper, we consider a Holling–Tanner model with spatial diffusion. Choosing appropriate parameter values in parameter spaces, we obtain rich patterns, including spotted, black-eye, and labyrinthine patterns. The numerical results show that predator–prey system can exhibit complicated behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. A 237, 37–72 (1952)

    Article  Google Scholar 

  2. Li, L., Jin, Z.: Pattern dynamics of a spatial predator–prey model with noise. Nonlinear Dyn. (in press)

  3. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.L.: Spatio-temporal complexity of plankton and fish dynamics in simple model ecosystems. SIAM Rev. 44, 311–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Pattern formation induced by cross-diffusion in a predator–prey system. Chinese Phys. B 17, 3936–3941 (2008)

    Google Scholar 

  5. Sun, G.-Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. 58, 75–84 (2009)

    Article  MATH  Google Scholar 

  6. Liu, Q.-X., Sun, G.-Q., Jin, Z., Li, B.-L.: Emergence of spatiotemporal chaos arising from far-field breakup of spiral waves in the plankton ecological systems. Chinese Phys. B 18, 506–515 (2009)

    Google Scholar 

  7. Liu, P.-P., Jin, Z.: Pattern formation of a predator–prey model. Nonlinear Anal. Hybrid Syst. 3, 177–183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, P.-P.: An analysis of a predator–prey model with both diffusion and migration. Math. Comput. Model. 51, 1064–1070 (2010)

    Article  MATH  Google Scholar 

  9. Sun, G.-Q., Jin, Z., Li, L., Li, B.-L.: Self-organized wave pattern in a predator–prey model. Nonlinear Dyn. 60, 265–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lou, Y., Ni, W.M.: Diffusion vs cross-diffusion: an elliptic approach. J. Differ. Equ. 154, 157–190 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hsu, S.B., Hwang, T.W.: Global stability for a class of predator–prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Peng, R., Wang, M.: Global stability of the equilibrium of a diffusive Holling–Tanner prey–predator model. Appl. Math. Lett. 20, 664–670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peng, R., Wang, M.: Positive steady-states of the Holling–Tanner prey–predator model with diffusion. Proc. R. Soc. Edinb. A 135, 149–164 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hsu, S.B., Huang, T.W.: Hopf bifurcation analysis for a predator–prey system of Holling and leslie type. Taiwan. J. Math. 3, 35–53 (1999)

    MATH  Google Scholar 

  15. Braza, P.A.: The bifurcation structure of the Holling–Tanner model for predator–prey interactions using two-timing. SIAM J. Appl. Math. 63, 889–904 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Saez, E., Gonzalez-Olivares, E.: Dynamics of a predator–prey model. SIAM J. Appl. Math. 59, 1867–1878 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsu, S.B., Huang, T.W.: Uniqueness of limit cycles for a predator–prey system of Holling and Lesile type. Can. Appl. Math. Q. 6, 91–99 (1998)

    MATH  Google Scholar 

  18. Collings, J.B.: Bifurcation and stability analysis of a temperature dependent mite predator–prey interaction model incorporating a prey refuge. Bull. Math. Biol. 57, 63–76 (1995)

    MATH  Google Scholar 

  19. Wollkind, D.J., Collings, J.B., Logan, J.A.: Metastability in a temperature-dependent model system for predator–prey mite outbreak interactions on fruit trees. Bull. Math. Biol. 50, 379–409 (1988)

    MathSciNet  MATH  Google Scholar 

  20. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)

    Google Scholar 

  21. Shi, R., Chen, L.: The study of a ratio-dependent predator–prey model with stage structure in the prey. Nonlinear Dyn. 58, 443–451 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, X.-K., Huo, H.-F., Xiang, H.: Bifurcation and stability analysis in predator–prey model with a stage-structure for predator. Nonlinear Dyn. 58, 497–513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, X., Tao, Y., Song, X.: A delayed HIV-1 infection model with Beddington–DeAngelis functional response. Nonlinear Dyn. 62, 67–72 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pei, Y., Li, S., Li, C.: Effect of delay on a predator–prey model with parasitic infection. Nonlinear Dyn. 63, 311–321 (2011)

    Article  MathSciNet  Google Scholar 

  25. Murray, J.D.: Mathematical Biology. II. Spatial Models and Biomedical Applications. Springer, New York (2003)

    Google Scholar 

  26. Andresen, P., Bache, M., Mosekilde, E., Dewel, G., Borckmanns, P.: Stationary space-periodic structures with equal diffusion coefficients. Phys. Rev. E 60, 297–301 (1999)

    Google Scholar 

  27. Kuznetsov, S.P., Mosekilde, E., Dewel, G., Borckmans, P.: Absolute and convective instabilities in a one-dimensional brusselator flow model. J. Chem. Phys. 106, 7609–7616 (1997)

    Article  Google Scholar 

  28. Callahan, T., Knobloch, E.: Pattern formation in three-dimensional reaction–diffusion systems. Physica D 132, 339–362 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Gunaratne, G., Ouyang, Q., Swinney, H.: Pattern formation in the presence of symmetries. Phys. Rev. E 50, 2802–2820 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Ipsen, M., Hynne, F., Soensen, P.: Amplitude equations for reaction–diffusion systems with a Hopf bifurcation and slow real modes. Physica D 136, 66–92 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Pena, B., Perez-Garcia, C.: Stability of Turing patterns in the Brusselator model. Phys. Rev. E 64, 056213 (2001)

    MathSciNet  Google Scholar 

  32. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Dynamical complexity of a spatial predator–prey model with migration. Ecol. Model. 219, 248–255 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, PP., Xue, Y. Spatiotemporal dynamics of a predator–prey model. Nonlinear Dyn 69, 71–77 (2012). https://doi.org/10.1007/s11071-011-0246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0246-5

Keywords

Navigation