Skip to main content
Log in

Analysis of the occurrence of stick-slip in AFM-based nano-pushing

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The use of the Atomic Force Microscope (AFM) as a tool to manipulate matter at the nanoscale is promising. However, the complexity of the corresponding physics and mechanics makes such nanomanipulation difficult and not very accurate. In the present paper, we analyze the dynamics of AFM-based nano-pushing manipulation. Simulation results show that the choice of the manipulation speed and loading force highly affect the manipulation outcome. In addition, simulations predict the existence of several threshold manipulation speeds. These thresholds mark the transitions between no stick-slip motion and either unique or multiple coexisting stick-slip. The obtained results bear significant implications and help get more insight into AFM-based nano-pushing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, G.: Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press, London (2004)

    Book  Google Scholar 

  2. Kirilyuk, A.P.: Complex dynamics of real nanosystems: fundamental paradigm for nanoscience and nanotechnology. Nanotechnologies 2, 1085 (2004)

    Google Scholar 

  3. Bhushan, B.: Handbook of Micro/Nano Tribology, 2nd edn. CRC Press, Boca Raton (1999)

    Google Scholar 

  4. Schaefer, D.M., Reifenberger, R., Patil, A., Andres, R.P.: Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope. Appl. Phys. Lett. 66(8), 1012–1014 (1995)

    Article  Google Scholar 

  5. Junno, T., Deppert, K., Montelius, L., Samuelson, L.: Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 66(26), 3627–3629 (1995)

    Article  Google Scholar 

  6. Sitti, M., Hashimoto, H.: Controlled pushing of nanoparticles: modeling and experiments. IEEE/ASME Trans. Mechatron. 5(2), 199–211 (2000)

    Article  Google Scholar 

  7. Decossas, S., Mazen, F., Baron, T., Bremond, G., Souifi, A.: Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication. Nanotechnology 14, 1272–1278 (2003)

    Article  Google Scholar 

  8. Tafazzoli, A., Pawashe, C., Sitti, M.: Atomic force microscope based two-dimensional assembly of micro/nanoparticles. In: IEEE, Montreal (2005)

    Google Scholar 

  9. Rubio-Sierra, F.J., Heckl, W.M., Stark, R.W.: Nanomanipulation by atomic force microscopy. Adv. Eng. Mater. 7(4), 193–196 (2005)

    Article  Google Scholar 

  10. Resch, R., Bugacov, A., Baur, C., Koel, B., Madhukar, A., Requicha, A., Will, P.: Manipulation of nanoparticles using dynamic forcemicroscopy: simulation and experiments. Appl. Phys. A 67, 265–271 (1998)

    Article  Google Scholar 

  11. Resch, R., Baur, C., Bugacov, A., Koel, B.E., Madhukar, A., Requicha, A.A.G., Will, P.: Building and manipulating three-dimensional and linked two-dimensional structures of nanoparticles using scanning force microscopy. ACS J. Surf. Colloids 14, 6613 (1998)

    Article  Google Scholar 

  12. Falvo, M., Clary, G., Helser, A., Paulson, S., Taylor, R., Chi, V., Brooks, J.F.P., Washburn, S., Superfine, R.: Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes. Microsc. Microanal 4 (1999)

  13. Falvo, M.R., Taylor, R.M. II, Helser, A., Chi, V., Brooks, F.P. Jr, Washburn, S., Superfine, R.: Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397, 236–238 (1999)

    Article  Google Scholar 

  14. Postma, H.W.C., Teepen, T., Yao, Z., Grifoni, M., Dekker, C.: Carbon nanotube single-electron transistors at room temperature. Science 293, 76–79 (2001)

    Article  Google Scholar 

  15. Salapaka, S., Sebastian, A., Cleveland, J.P., Salapaka, M.V.: High bandwidth nano-positioner: a robust control approach. Rev. Sci. Instrum. 73(9), 3232–3241 (2002)

    Article  Google Scholar 

  16. Manalis, S.R., Minne, S.C., Quate, C.F.: Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator and sensor. Appl. Phys. Lett. 68(6), 871–873 (1996)

    Article  Google Scholar 

  17. Schitter, G., Menold, P., Knapp, H.F., Allgower, F., Stemmer, A.: High performance feedback for fast scanning atomic force microscopes. Rev. Sci. Instrum. 72(8), 3320–3327 (2001)

    Article  Google Scholar 

  18. Zou, Q., Leang, K.K., Sadoun, E., Reed, M., Devasia, S.: Control issues in high-speed AFM for biological applications: collagen imaging example. Asian J. Control 6(2), 164–178 (2004)

    Article  Google Scholar 

  19. Yan, Y., Zou, Q., Lin, Z.: A control approach to high-speed probe-based nanofabrication. In: Proceedings of the 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA, 10–12 June 2009

    Google Scholar 

  20. Israelachvili, J.: Intermolecular and Surface Forces, 2nd edn. Academic Press, San Diego (1995)

    Google Scholar 

  21. Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., Guntherodt, H.-J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)

    Article  Google Scholar 

  22. Kerssemakers, J., Hosson, J.T.M.D.: Influence of spring stiffness and anisotropy on stick-slip atomic force microscopy imaging. Appl. Phys. 80(2), 623–631 (1996)

    Google Scholar 

  23. Fujisawa, S., Sugawara, Y., Ito, S., Mishima, S., Okada, T., Morita, S.: The two-dimensional stick-slip phenomenon with atomic resolution. Nanotechnology 4, 138–142 (1993)

    Article  Google Scholar 

  24. Morita, S., Fujisawa, S., Sugawara, Y.: Spatially quantized friction with a lattice periodicity. Surf. Sci. Rep. 23, 1–41 (1996)

    Article  Google Scholar 

  25. Landolsi, F., Ghorbel, F.H., Lou, J., Lu, H., Sun, Y.: Nanoscale friction dynamic modeling. J. Dyn. Syst. Meas. Control 131, 061102 (2009). doi:10.1115/1.3223620

    Article  Google Scholar 

  26. Prioli, R., Rivas, A.M.F., Freire, F.L. Jr., Caride, A.O.: Influence of velocity in nanoscale friction processes. Appl. Phys. A, Mater. Sci. Process. 76, 565–569 (2003)

    Article  Google Scholar 

  27. Mualim, Y., Ghorbel, F.H., Dabney, J.B.: Nanomanipulation modeling and simulation. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Chicago, IL, USA, 5–10 November 2006

    Google Scholar 

  28. Landolsi, F., Ghorbel, F.H., Dabney, J.B.: An AFM-based nanomanipulation model describing the atomic two dimensional stick-slip behavior. In: Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition, Seattle, WA, USA, 11–15 November 2007

    Google Scholar 

  29. Turner, J.A., Hirsekorn, S., Rabe, U., Arnold, W.: High-frequency response of atomic-force microscope cantilevers. J. Appl. Phys. 82(3), 966–979 (1997)

    Article  Google Scholar 

  30. Burnham, N.A., Kulik, A.J., Gremaud, G., Gallo, P.-J., Oulevey, F.: Scanning local-acceleration microscopy. J. Vac. Sci. Technol. 14(2), 794–799 (1996)

    Article  Google Scholar 

  31. Mokhtari-Nezhad, F., Saidi, A.R., Ziaei-Rad, S.: Influence of the tip mass and position on the afm cantilever dynamics: coupling between bending, torsion and flexural modes. Ultramicroscopy 109, 1193–1202 (2009)

    Article  Google Scholar 

  32. Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys., Condens. Matter 13, R619–R642 (2001)

    Article  Google Scholar 

  33. Conley, W.G., Raman, A., Krousgrill, C.M.: Nonlinear dynamics in Tomlinson’s model for atomic-scale friction and friction force microscopy. J. Appl. Phys. 98, 053519 (2005)

    Article  Google Scholar 

  34. Hoshi, Y., Kawagishi, T., Kawakatsu, H.: Velocity dependence and limitations of friction force microscopy of mica and graphite. Jpn. J. Appl. Phys. 39, 3804–3807 (2000)

    Article  Google Scholar 

  35. Johnson, K., Woodhouse, J.: Stick-slip motion in the atomic force microscope. Tribol. Lett. 5, 155–160 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathi H. Ghorbel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landolsi, F., Ghorbel, F.H. & Dick, A.J. Analysis of the occurrence of stick-slip in AFM-based nano-pushing. Nonlinear Dyn 68, 177–186 (2012). https://doi.org/10.1007/s11071-011-0214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0214-0

Keywords

Navigation