Skip to main content
Log in

A new fundamental diagram theory with the individual difference of the driver’s perception ability

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the driver’s individual difference of the driver’s perception ability, we in this paper develop a new fundamental diagram with the driver’s perceived error and speed deviation difference. The analytical and numerical results show that the speed-density and flow-density data are divided into three prominent regions. In the first region, the speed-density and flow-density data are scattered around the equilibrium speed-density and flow-density curves of the classical fundamental diagram theory, where the widths of these scattered data are very narrow and slightly increase with the real density (i.e., the scattered data appear as two thicker lines); the running speed is approximately equal to the free flow speed and the real flow approximately linearly increases with the real density. In the second region, the speed-density and flow-density data are scattered widely in a two-dimensional region, but the shapes of these widely scattered data are related to the properties of the driver’s perceived error and speed deviation difference. In the third region, the scattered speed-density and flow-density data appear but these scattered data will quickly degenerate into the equilibrium speed-density and flow-density curves with the increase of the real density. Finally, the numerical results illustrate that the new fundamental diagram theory also produces the F-line, U-line, and L-line. The shapes of the scattered data, F-line, U-line, and L-line are relevant to the properties of the driver’s perceived error and speed deviation difference. These results are qualitatively accordant with the real traffic, which shows that the new fundamental diagram theory can better describe some complex traffic phenomena in the real traffic system. In addition, the above results can help us to further explain why the widely scattered speed-density and flow-density data appear in the real traffic system and better understand the effects of the driver’s individual difference on traffic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chowdhury, D., Santen, L., Schreckenberg, A.: Statistics physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  2. Kerner, B.S.: Three-phase traffic theory and highway capacity. Physica A 333, 379–440 (2004)

    Article  MathSciNet  Google Scholar 

  3. Kerner, B.S., Rehborn, H.: Experimental features and characteristic of traffic jams. Phys. Rev. E 53, R1297–R1300 (1996)

    Article  Google Scholar 

  4. Kerner, B.S., Rehborn, H.: Experimental properties of complexity in traffic flow. Phys. Rev. E 53, R4275–R4278 (1996)

    Article  Google Scholar 

  5. Kerner, B.S., Rehborn, H.: Experimental properties of phase transitions in traffic flow. Phys. Rev. Lett. 79, 4030–4033 (1997)

    Article  Google Scholar 

  6. Kerner, B.S., Klenov, S.L., Konhäuster, P.: Asymptotic theory of traffic jams. Phys. Rev. E 56, 4200–4216 (1997)

    Article  Google Scholar 

  7. Kerner, B.S.: Experimental features of self-organization in traffic flow. Phys. Rev. Lett. 81, 3797–3800 (1998)

    Article  MATH  Google Scholar 

  8. Kerner, B.S.: A theory of congested traffic flow. In: Proceedings of the 3rd International Symposium on Highway Capacity, Road Directorate, Denmark, vol. 2, pp. 621–642 (1998)

    Google Scholar 

  9. Kerner, B.S.: Congested traffic flow: observation and theory. Transp. Res. Rec. 1678, 160–167 (1999)

    Article  Google Scholar 

  10. Kerner, B.S.: Experimental features of the emergence of moving jams in free traffic flow. J. Physics A 33, L221–L228 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kerner, B.S.: Theory of breakdown phenomena at highway bottlenecks. Transp. Res. Rec. 1710, 136–144 (2000)

    Article  Google Scholar 

  12. Kerner, B.S.: Empirical features of congested patterns at highway bottlenecks. Transp. Res. Rec. 1802, 145–154 (2002)

    Article  Google Scholar 

  13. Kerner, B.S.: Empirical macroscopic features of spatio-temporal traffic pattern at highway bottlenecks. Phys. Rev. E 65, 046138 (2002)

    Article  Google Scholar 

  14. Kerner, B.S., Klenov, S.L.: A microscopic model for phase transition in traffic flow. J. Physics A 35, L31–L43 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kerner, B.S., Klenov, S.L., Wolf, D.E.: Cellular automata approach to three-phase traffic theory, J. Physics A 35, 9971–10013 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kerner, B.S., Klenov, S.L.: Microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks. Phys. Rev. E 68, 036130 (2003)

    Article  Google Scholar 

  17. Kerner, B.S.: The Physics of Traffic. Springer, Heidelberg (2004)

    Google Scholar 

  18. Kerner, B.S., Rehborn, H., Aleksic, M., Haug, A.: Recognition and tracking of spatial-temporal congested traffic patterns on freeways. Transp. Res. C 12, 369–400 (2004)

    Article  Google Scholar 

  19. Kerner, B.S.: Control of spatialtemporal congested traffic patterns at highway bottleneck. Physica A 355, 565–601 (2005)

    Article  Google Scholar 

  20. Kerner, B.S.: Microscopic three-phase traffic theory and its application for freeway traffic control. In: Proceeding of International Symposium on Transportation and Traffic Theory, pp. 181–203. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  21. Kerner, B.S., Klenov, S.L., Hiller, A., Rehborn, H.: Microscopic features of moving traffic jams. Phys. Rev. E 73, 046107 (2006)

    Article  Google Scholar 

  22. Kerner, B.S., Klenov, S.L.: Probabilistic breakdown phenomenon at on-ramp bottlenecks in three-phase traffic theory: congestion nucleation in spatially non-homogeneous traffic. Physica A 364, 473–492 (2006)

    Article  Google Scholar 

  23. Kerner, B.S.: On-ramp metering based on three-phase traffic theory. Traffic Eng. Control 48, 28–35 (2007)

    Google Scholar 

  24. Kerner, B.S.: Phase transition in traffic flow on multilane roads. Phys. Rev. E 80, 056101 (2009)

    Article  Google Scholar 

  25. Kerner, B.S.: Introduction to Modern Traffic Flow Theory and Control. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  26. Gupta, A.K., Katiyar, V.K.: Phase transition of traffic states with on-ramp. Physica A 371, 674–682 (2006)

    Article  Google Scholar 

  27. Davis, L.C.: Driver choice compared to controlled diversion for a freeway double on-ramp in the framework of three-phase traffic theory. Physica A 387, 6395–6410 (2008)

    Article  Google Scholar 

  28. Gao, K., Jiang, R., Wang, B.H., Wu, Q.S.: Discontinuous transition from free flow to synchronized flow induced by short-range interaction between vehicles in three-phase traffic flow model. Physica A 388, 3233–3243 (2009)

    Article  Google Scholar 

  29. Tian, J.F., Jia, B., Li, X.G., Jiang, R., Zhao, X.M., Gao, Z.Y.: Synchronized traffic flow simulating with cellular automaton model. Physica A 388, 4827–4837 (2009)

    Article  Google Scholar 

  30. Huang, D.W.: How the on-ramp inflow causes bottleneck. Physica A 388, 63–70 (2009)

    Article  Google Scholar 

  31. Zhao, B.H., Hu, M.B., Jiang, R., Wu, Q.S.: A realistic cellular automaton model for synchronized traffic flow. Chin. Phys. Lett. 26, 118902 (2009)

    Article  Google Scholar 

  32. He, S., Guan, W., Song, L.: Explaining traffic patterns at on-ramp vicinity by a driver perception model in the framework of three-phase traffic theory. Physica A 389, 825–836 (2010)

    Article  Google Scholar 

  33. Lighthill, M.J., Whitham, G.B.: On kinematic waves II: a theory of traffic on long crowded roads. Proc. R. Soc. Lond. Ser. A 229, 317–345 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  34. Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  35. Payne, H.J.: Models of freeway traffic and control. In: Bekey, G.A. (ed.) Mathematical Models of Public System. Simulation Councils Proceedings Series, vol. 1, pp. 51–61 (1971)

    Google Scholar 

  36. Gazis, D.C., Herman, R.: The moving and “phantom” bottlenecks. Transp. Sci. 26, 223–229 (1992)

    Article  MATH  Google Scholar 

  37. Kerner, B.S., Konhäuster, P.: Cluster effect in initial homogeneous traffic flow. Phys. Rev. E 48, R2335–R2338 (1993)

    Article  Google Scholar 

  38. Daganzo, C.F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. B 28, 269–287 (1994)

    Article  Google Scholar 

  39. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  40. Helbing, D.: Improved fluid-dynamic model for vehicular traffic. Phys. Rev. E 51, 3164–3169 (1995)

    Article  Google Scholar 

  41. Helbing, D.: Gas-kinematic derivation of Navier-Stokes-like traffic equations. Phys. Rev. E 53, 2366–2381 (1996)

    Article  MathSciNet  Google Scholar 

  42. Wagner, C., Hoffmann, C., Sollacher, R., Wagenhuber, J., Schürmann, B.: Second-order continuum traffic flow model. Phys. Rev. E 54, 5073–5085 (1996)

    Article  Google Scholar 

  43. Daganzo, C.F.: A continuum theory of traffic dynamics for freeways with special lanes. Transp. Res. B 31, 83–102 (1997)

    Article  Google Scholar 

  44. Daganzo, C.F., Li, W.H., Castillo, J.M.: A simple physical principle for the simulation of freeways with special lanes and priority vehicles. Transp. Res. B 31, 103–125 (1997)

    Article  Google Scholar 

  45. Holland, E.N., Woods, A.W.: A continuum model for dispersion of traffic on two-lane roads. Transp. Res. B 31, 473–485 (1997)

    Article  Google Scholar 

  46. Zhang, H.M.: A theory of nonequilibrium traffic flow. Transp. Res. B 32, 485–498 (1998)

    Article  Google Scholar 

  47. Helbing, D., Treiber, M.: Numerical simulation of macroscopic traffic equations. Comput. Sci. Eng. 1, 89–99 (1999)

    Article  Google Scholar 

  48. Hebling, D., Hennecke, A., Treiber, M.: Phase diagram of traffic states in the presence of inhomogeneities. Phys. Rev. Lett. 82, 4360–4363 (1999)

    Article  Google Scholar 

  49. Shvetsov, V., Helbing, D.: Macroscopic dynamics of multilane traffic. Phys. Rev. E 59, 6328–6339 (1999)

    Article  Google Scholar 

  50. Treiber, M., Hennecke, A., Helbing, D.: Derivation, properties, and simulation of a gas-kinematic-based, non-local traffic model. Phys. Rev. E 59, 239–253 (1999)

    Article  Google Scholar 

  51. Aw, A., Rascle, M.: Resurrection of “second-order” models of traffic flow. SIAM J. Appl. Math. 60, 916–938 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  52. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805–1824 (2000)

    Article  Google Scholar 

  53. Nelson, P.: Synchronized traffic flow from a modified Lighthill-Whitham model. Phys. Rev. E 61, R6052–R6055 (2000)

    Article  Google Scholar 

  54. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  Google Scholar 

  55. Helbing, D., Hennecke, A., Shvetsov, V., Treiber, M.: MASTER: macroscopic traffic simulation based on a gas-kinematic, non-local traffic model. Transp. Res. B 35, 183–211 (2001)

    Article  Google Scholar 

  56. Wong, G.C.K., Wong, S.C.: A multi-class traffic flow model-an extension of LWR model with heterogeneous drivers. Transp. Res. A 36, 827–841 (2002)

    Google Scholar 

  57. Jiang, R., Wu, Q.S., Zhu, Z.J.: A new continuum model for traffic flow and numerical tests. Transp. Res. B 36, 405–419 (2002)

    Article  Google Scholar 

  58. Munoz, J.C., Daganzo, C.F.: Moving bottlenecks: a theory grounded on experimental observation. In: Proceeding of the 15th International Symposium of Traffic and Transportation Theory, pp. 441–462. Pergamon, Oxford (2002)

    Google Scholar 

  59. Aw, A., Klar, A., Materne, T., Rascle, M.: Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Appl. Math. 63, 259–278 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  60. Zhang, H.M.: A nonequilibrium traffic model devoid of gas-like behavior. Transp. Res. B 36, 275–290 (2002)

    Article  Google Scholar 

  61. Xue, Y., Dai, S.Q.: Continuum traffic model with the consideration of two delay scales. Phys. Rev. 68, 066123 (2003)

    Google Scholar 

  62. Helbing, D.: A section-based queueing-theoretical traffic model for congestion and travel time analysis in networks. J. Physics A 36, L593–L598 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  63. Benzoni-Gavage, S., Colombo, R.: An n-populations model for traffic flow. Euro. J. Appl. Math. 14, 587–612 (2003)

    MATH  MathSciNet  Google Scholar 

  64. Tang, T.Q., Huang, H.J., Gao, Z.Y.: Stability of the car-following model on two lanes. Phys. Rev. E 72, 066124 (2005)

    Article  Google Scholar 

  65. Ossen, S.J., Hoogendoorn, S.P.: Car-following behavior analysis from microscopic trajectory data. Transp. Res. Rec. 1934, 13–21 (2005)

    Article  Google Scholar 

  66. Nagel, K., Nelson, P.: A critical comparison of the kinematic-wave model with observational data. In: Proceeding of the 15th International Symposium of Traffic and Transportation Theory, pp. 145–163. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  67. Treiber, M., Kesting, A., Helbing, D.: Delays, inaccuracies and anticipation in microscopic traffic models. Physica A 360, 71–88 (2006)

    Article  Google Scholar 

  68. Huang, H.J., Tang, T.Q., Gao, Z.Y.: Continuum modeling for two-lane traffic flow. Acta Mech. Sin. 22, 131–137 (2006)

    Article  MATH  Google Scholar 

  69. Gupta, A.K., Katiyar, V.K.: A new multi-class continuum model for traffic flow. Transportmetrica 3, 73–85 (2007)

    Article  Google Scholar 

  70. Helbing, D., Tilch, B.: A power law for the duration of high-flow states and its interpretation from heterogeneous traffic flow perspective. Eur. Phys. J. B 68, 577–586 (2009)

    Article  MATH  Google Scholar 

  71. Helbing, D.: Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models. Eur. Phys. J. B 69, 539–548 (2009)

    Article  MathSciNet  Google Scholar 

  72. Treiber, M., Kesting, A., Helbing, D.: Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps. Phys. Rev. E 74, 016123 (2006)

    Article  Google Scholar 

  73. Schönhof, M., Helbing, D.: Empirical features of congested traffic states and their implications for traffic modeling. Transp. Sci. 41, 135–166 (2007)

    Article  Google Scholar 

  74. Schönhof, M., Helbing, D.: Criticism of three-phase traffic theory. Transp. Res. B 43, 784–797 (2009)

    Article  Google Scholar 

  75. Treiber, M., Kesting, A., Helbing, D.: Three-phase traffic theory and two-phase models with fundamental diagram in the light of empirical stylized facts. Transp. Rev. B 44, 983–1000 (2010)

    Article  Google Scholar 

  76. Ngoduy, D.: Multiclass first order modelling of traffic networks using discontinuous flow-density relationships. Transportmetrica 6, 121–141 (2010)

    Article  Google Scholar 

  77. Bank, J.H.: Investigation of some characteristics of congested flow. Transp. Res. Rec. 1678, 128–134 (1999)

    Article  Google Scholar 

  78. Nishinari, K., Treiber, M., Helbing, D.: Interpreting the wide scattering of the synchronized traffic data by time gap statistics. Phys. Rev. E 68, 067101 (2003)

    Article  Google Scholar 

  79. Treiber, M., Helbing, D.: Macroscopic simulation of widely scattered synchronized traffic states. J. Physics A 32, L17–L23 (1999)

    Article  Google Scholar 

  80. Treiber, M., Helbing, D.: Memory effects in microscopic traffic models and wide scattering in flow-density data. Phys. Rev. E 68, 046119 (2003)

    Article  Google Scholar 

  81. Ngoduy, D.: Multiclass first-order traffic model using stochastic fundamental diagrams. Transportmetrica 7, 111–125 (2011)

    Article  Google Scholar 

  82. Yang, H.H., Peng, H.: Development of an errorable car-following driver model. Veh. Syst. Dyn. 48, 751–773 (2010)

    Article  Google Scholar 

  83. Li, J., Chen, Q.Y., Wang, Y., Ni, D.: Investigation of LWR model with flux function driven by random free flow speed. In: The 88th Transportation Research Board Annual Meeting, DVD-ROM, Washington, DC

  84. Daganzo, C.F.: Requiem for second-order fluid approximations of traffic flow. Transp. Res. B 29, 277–286 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieqiao Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, T., Li, C., Huang, H. et al. A new fundamental diagram theory with the individual difference of the driver’s perception ability. Nonlinear Dyn 67, 2255–2265 (2012). https://doi.org/10.1007/s11071-011-0143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0143-y

Keywords

Navigation