Skip to main content
Log in

Analytical solutions of dynamic mode I crack under the conditions of displacement boundary

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

By the approaches of the theory of complex variable functions, the problems of dynamic mode I crack under the condition of displacement boundary are investigated. For this kind of dynamic crack extension problems with arbitrary index of self-similarity, the universal representations of analytical solutions are facilely deduced by the methods of self-similar functions. Analytical solutions of the stresses, displacements and stress intensity factors are readily acquired using the methods of self-similar functions. The problems studied can be very easily translated into Riemann–Hilbert problems and their closed solutions are gained rather straightforward in terms of this technique. According to corresponding material properties, the mutative rule of stress intensity factor was illustrated very well. Using those solutions and superposition theorem, the solutions of arbitrarily complex problems can be attained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charepanov, G.P.: Mechanics of Brittle Fracture, pp. 732–792. Nauka, Moscow (1973)

    Google Scholar 

  2. Broberg, K.B.: The propagation of a brittle crack. Arch. Phys. 18, 159–192 (1960)

    MathSciNet  Google Scholar 

  3. Erdogan, F.: Crack Propagation Theories. Fracture II, pp. 497–509. Academic Press, New York (1968)

    Google Scholar 

  4. Piva, A., Viola, E.: Crack propagation in an orthotropic media. Eng. Fract. Mech., 29, 535–547 (1988)

    Article  Google Scholar 

  5. Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  6. Yu, H.H., Yang, W.: Mechanics of transonic debonding of a bimaterial interface: The anti-plane shear case. J. Mech. Phys. Solids 2(10), 1789–1802 (1994)

    Article  MathSciNet  Google Scholar 

  7. Yu, H.H., Yang, W.: Mechanics of transonic debonding of a bimaterial interface: The in-plane case. J. Mech. Phys. Solids 43(2), 207–232 (1995)

    Article  MATH  Google Scholar 

  8. Gao, H.J.: A theory of local limiting speed in dynamic fracture. J. Mech. Phys. Solids 44(9), 1453–1474 (1996)

    Article  Google Scholar 

  9. Burridge, R.: Admissible speeds for plane-strain self-similar shear cracks with friction but lacking cohesion. Geophys. J. R. Astron. Soc. 35(3), 439–455 (1973)

    MATH  Google Scholar 

  10. Andrew, D.J.: Rupture velocity of plane strain shear cracks. J. Geophys. Res. 81(32), 5679–5687 (1976)

    Article  Google Scholar 

  11. Burridge, R., Conn, G., Freund, L.B.: The stability of a rapid mode II shear crack with finite cohesive traction. J. Geophys. Res. 85(B5), 2210–2222 (1979)

    Article  Google Scholar 

  12. Rosakis, A.J., Samudrala, O., Coker, D.: Cracks faster than the shear wave speed. Science 284, 1337–1340 (1999)

    Article  Google Scholar 

  13. Washbaugh, P.D., Knauss, W.G.: A reconciliation of dynamic crack velocity and Rayleigh wave speed in isotropic brittle solids. Int. J. Fract. 65(2), 169–188 (1994)

    Google Scholar 

  14. Sih, G.C.: Surface displacement characteristics of line crack trespassing the Rayleigh wave speed barrier as influenced by velocity and applied stress dependent local zone of restrain. Theor. Appl. Fract. Mech. 41(2), 185–231 (2004)

    Article  MathSciNet  Google Scholar 

  15. Tang, X.S., Sih, G.C.: Kinetics of microcrack blunting ahead of macrocrack approaching shear wave speed. Theor. Appl. Fract. Mech. 42(2), 99–130 (2004)

    Article  Google Scholar 

  16. Buchler, M.J., Gao, H.J., Huang, Y.G.: Atomistic and continuum studies of stress and strain fields near a rapidly propagating crack in a harmonic lattice. Theor. Appl. Fract. Mech. 41(1), 21–42 (2004)

    Article  Google Scholar 

  17. Sih, G.C.: Some elastodynamics problems of cracks. Int. J. Fract. 1(1), 51–68 (1968)

    Google Scholar 

  18. Kostrov, B.V.: Self-similar problems of propagation of shear cracks. J. Appl. Math. Mech. 28, 1077–1087 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lü, N.-C., Cheng, J., Cheng, Y.-H.: Mode III interface crack propagation in two joined media with weak dissimilarity and strong orthotropy. Theor. Appl. Fract. Mech. 36, 219–231 (2001)

    Article  Google Scholar 

  20. Sih, G.C.: Mechanics of Fracture Initiation and Propagation. Kluwer Academic, Boston (1991)

    Book  Google Scholar 

  21. Fan, T.-Y.: Quotation of Fracture Dynamics. Publisher of Beijing Science and Technology, Beijing (1990) (in Chinese)

    Google Scholar 

  22. Rubin-Gonzalea, C., Mason, J.J.: Dynamic Intensity Factors at the tip of a uniformly loaded semi-infinite crack in an orthotropic material. J. Mech. Phys. Solids 48(5), 899–925 (2000)

    Article  MathSciNet  Google Scholar 

  23. Sih, G.C., MacDonald, B.: Fracture of mechanics applied to engineering problems. Strain energy density fracture criterion. Eng. Fract. Mech. 6(2), 361–386 (1974)

    Article  Google Scholar 

  24. Knauss, W.G.: Dynamic fracture. Int. J. Fract. 25, 35–91 (1987)

    Google Scholar 

  25. Rice, J.R.: Comment on stress in an infinite strip containing a semi-infinite cracks. J. Appl. Mech. 34, 248–249 (1967)

    Article  Google Scholar 

  26. Hartranft, R.J., Sih, G.C.: Alternating method applied to edge and surface crack problems. In: Sih, G.C. (ed.) Mech. Frac, vol. 1, pp. 177–238 (1973)

    Google Scholar 

  27. Solommer, E., Soltesz, U.: Crack-opening-displacement measurements of a dynamically loaded crack. Eng. Fract. Mech. 2, 235–241 (1971)

    Article  Google Scholar 

  28. Wang, Y.H.: Analysis of an edge-cracked body subjected to a longitudinal shear force. Eng. Fract. Mech. 42, 45–50 (1992)

    Article  Google Scholar 

  29. Baker, B.R.: Dynamic stresses created by moving crack. J. Appl. Mech. 29(3), 449–458 (1962)

    Article  MATH  Google Scholar 

  30. Charepanov, G.P., Afanasov, E.F.: Some dynamic problems of the theory of elasticity—A review. Int. J. Eng. Sci. 12, 665–690 (1970)

    Article  Google Scholar 

  31. Lü, N.C., Cheng, Y.H., Li, X.G., Cheng, J.: Dynamic propagation problem of mode I semi-infinite crack subjected to superimpose loads. Fatigue Fract. Eng. Mater. Struct. 33(1), 141–148 (2010)

    Google Scholar 

  32. Lü, N.-C., Cheng, Y.-H., Cheng, J.: An asymmetrical self-similar dynamic crack model of bridging fiber pull-out in unidirectional composite materials. Int. J. Comput. Methods Eng. Sci. Mech. 9(3), 171–179 (2008)

    Article  MATH  Google Scholar 

  33. Muskhelishvili, N.I.: Singular Integral Equations. Nauka, Moscow (1968)

    MATH  Google Scholar 

  34. Muskhelishvili, N.I.: Some Fundamental Problems in the Mathematical Theory of Elasticity. Nauka, Moscow (1968)

    Google Scholar 

  35. Atkinson, C.: The propagation of a brittle crack in anisotropic material. Int. J. Eng. Sci. 3(2), 77–91 (1965)

    Article  MATH  Google Scholar 

  36. Lü, N.-C., Cheng, J., Cheng, Y.-H.: Models of fracture dynamics of bridging fiber pull-out of composite materials. Mech. Res. Commun. 32(1), 1–14 (2005)

    Article  MATH  Google Scholar 

  37. Lü, N.C., Cheng, Y.H., Si, H.L., Cheng, J.: Dynamics of asymmetrical crack propagation in composite materials. Theor. Appl. Fract. Mech. 47(3), 260–273 (2007)

    Article  Google Scholar 

  38. Hoskins, R.F.: Generalized Functions. Ellis Horwood, Chichester (1979)

    Google Scholar 

  39. Gahov, F.D.: Boundary-Value Problems. Fitzmatigiz, Moscow (1963)

    Google Scholar 

  40. Wang, X.-S.: Singular Functions and Their Applications in Mechanics, pp. 3–45. Scientific Press, Beijing (1993) (in Chinese)

    Google Scholar 

  41. Sih, G.C.: Mechanics of Fracture 4. Elastodynamics Crack Problems, pp. 213–247. Noordhoff, Leyden (1977)

    Google Scholar 

  42. Kanwal, R.P., Sharma, D.L.: Singularity methods for elastostatics. J. Elast. 6(4), 405–418 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  43. Editorial Group of Mathematics Handbook: Mathematics Handbook, pp. 244–300. Advanced Education Press, Beijing (2002) (in Chinese)

    Google Scholar 

  44. Teaching Office of Mathematics of Tongji University: Advanced Mathematics, vol. 1, pp. 167–172. Advanced Education Press, Beijing (1994) (in Chinese)

    Google Scholar 

  45. Wu, K.C.: Dynamic crack growth in anisotropic material. Int. J. Fract. 106(1), 1–12 (2000)

    Article  Google Scholar 

  46. Lü, N.C., Cheng, Y.H., Cheng, J.: Mode I crack tips propagating at different speeds under differential surface tractions. Theor. Appl. Fract. Mech. 46(3), 262–275 (2006)

    Article  Google Scholar 

  47. Kalthof, J.F., Beinert, J., Winkler, S.: Measurements of dynamic stress intensity factors for fastrunning and arresting cracks in double-cantilever-beam specimens. In: Fast Fracture and Crack Arrest. ASTM, vol. 627, pp. 161–176. STP, Philadelphia (1977)

    Chapter  Google Scholar 

  48. Kobayashi, A.S.: Dynamic fracture analysis by dynamic finite element method. Generation and prediction analyses. In: Nonlinear and Dynamic Fracture Mechanics. AMD, vol. 35, pp. 19–36. ASME, New York (1979)

    Google Scholar 

  49. Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture: Part 1, crack initiation and arrest. Int. J. Fract. 25(41), 247–262 (1984)

    Article  Google Scholar 

  50. Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture: Part 2, microstructural aspects. Int. J. Fract. 26(11), 65–80 (1984)

    Article  Google Scholar 

  51. Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture: Part 3, on steady-state crack propagation and crack branching. Int. J. Fract. 26(2), 141–152 (1984)

    Article  Google Scholar 

  52. Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture: Part 4, on the interaction of stress waves with propagation cracks. Int. J. Fract. 26(3), 189–200 (1984)

    Article  Google Scholar 

  53. Lü, N.-C., Li, X.-G., Cheng, Y.-H., Cheng, J.: An asymmetrical dynamic crack model of bridging fiber pull-out of composite materials. Fiber Polym. 12(1), 79–88 (2011)

    Article  Google Scholar 

  54. Wang, Y.H., Cheung, Y.K., Woo, C.W.: Anti-plane shear problem for an edge crack in a finite orthotropic plate. Eng. Fract. Mech. 42(6), 971–976 (1992)

    Article  Google Scholar 

  55. Lü, N.-C., Cheng, Y.-H., Li, X.-G., Cheng, J.: Dynamic propagation problems concerning the surfaces of asymmetrical mode III crack subjected to moving loads. Appl. Math. Mech. 29(10), 1279–1290 (2008)

    Article  MATH  Google Scholar 

  56. Lü, N.C., Cheng, Y.H., Wang, Y.T., Cheng, J.: Dynamic fracture of orthotropic solids under anti-plane shear loading. Mech. Adv. Mater. Struct. 17(3), 215–224 (2010)

    Article  Google Scholar 

  57. Lü, N.-C., Cheng, Y.-H., Wang, Y.-T., Cheng, J.: Dynamic extension problems concerning asymmetrical mode III crack. Appl. Math. Model. 35, 2499–2507 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Lü, N.-C., Cheng, Y.-H., Wang, Y.-T., Cheng, J.: Fracture dynamics problems of orthotropic solids under anti-plane shear loading. Nonlinear Dyn. 63(4), 793–806 (2011)

    Article  Google Scholar 

  59. Wang, Y.-S., Wang, D.: Transient motion of an interface dislocation and self-similar propagation of an interface crack: anti-plane motion. Eng. Fract. Mech. 55(5), 717–725 (1996)

    Article  Google Scholar 

  60. Wu, K.-C.: Transient motion of an interfacial line force or dislocation in an anisotropic elastic material. Int. J. Solids Struct. 40(8), 1811–1823 (2003)

    Article  MATH  Google Scholar 

  61. Atkinson, C.: On the dynamic stress and displacement field associated with a crack propagating across the interface between two media. Int. J. Eng. Sci. 13(5), 491–506 (1975)

    Article  Google Scholar 

  62. Lü, N.-C., Yang, D.-N., Cheng, Y.-H., Cheng, J.: Asymmetrical dynamic propagation problems on mode III interface crack. Appl. Math. Mech. 28(4), 501–510 (2007)

    Article  MATH  Google Scholar 

  63. Lü, N.-C., Cheng, J., Tian, X.-B., Cheng, Y.-H.: Dynamic propagation problem on Dugdale model of mode III interface crack. Appl. Math. Mech. 26(9), 1212–1221 (2005)

    Article  MATH  Google Scholar 

  64. Lü, N.-C., Cheng, Y.-H., Cheng, J.: Dynamic propagation problems concerning asymmetrical mode III interface crack. Int. J. Comput. Methods Eng. Sci. Mech. 9(4), 246–253 (2008)

    Article  MATH  Google Scholar 

  65. Lü, N.C., Cheng, Y.H., Li, X.G., Cheng, J.: Asymmetrical dynamic propagation problems concerning mode III interface crack. Compos. Interfaces 17(1), 37–48 (2010)

    Article  Google Scholar 

  66. Lü, N.-C., Cheng, J., Cheng, Y.-H.: Self-similar solutions of fracture dynamics problems on axially symmetry. Appl. Math. Mech. 22(12), 1429–1435 (2001)

    Article  MATH  Google Scholar 

  67. Sneddon, N.I.: Fourier Transform. McGraw-Hill, New York (1951)

    Google Scholar 

  68. Muskhelishvili, N.I.: Some Basic Problems from the Mathematical Theory of Elasticity. Noordoff, Groningen (1953)

    MATH  Google Scholar 

  69. Galin, L.A.: Contact Problems in Elasticity Theory. GITTL, Moscow (1953)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian-Chun Lü.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, NC., Cheng, YH., Li, XG. et al. Analytical solutions of dynamic mode I crack under the conditions of displacement boundary. Nonlinear Dyn 67, 2197–2205 (2012). https://doi.org/10.1007/s11071-011-0139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0139-7

Keywords

Navigation