Skip to main content
Log in

Algebraic linearization criteria for systems of ordinary differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Algebraic linearization criteria by means of general point transformations for systems of two second-order nonlinear ordinary differential equations (ODEs) are revisited. In previous work due to Wafo Soh and Mahomed (Int. J. Non-Linear Mech. 36:671, 2001) two four-dimensional Lie algebras that result in linearizability in terms of arbitrary point transformation for such systems were studied. Here we consider three more algebras of dimension four that result in linearization. Therefore our results supplement those of Wafo Soh and Mahomed (Int. J. Non-Linear Mech. 36:671, 2001). Moreover, it is shown that these are the only other possibilities for dimension four. Hence we provide the complete algebraic linearization criteria for dimension four algebras. Necessary and sufficient conditions for linearization via invertible maps of a nonlinear to a linear system are given. These are shown to be built up from the Lie algebraic criteria for linearization of scalar second-order ODEs. These results together with very recent work (Bagderina in J. Phys. A, Math. Theor. 43:465201, 2010) give a complete picture on linearizability properties via general point transformations for systems of two second-order ODEs. Furthermore, we provide natural extensions of these algebraic criteria for linearizing arbitrary systems of nonlinear second-order ODEs by means of point transformations. We also obtain algebraic criteria for the reduction of a linear system to the simplest system. Examples from Newtonian mechanics and geodesic equations are presented to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prince, G., Eliezer, C.: Symmetries of the time-dependent N dimensional oscillator. J. Phys. A, Math. Gen. 13, 815 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Sen, T.: Lie symmetries and integrability. J. Phys. Lett. A 122, 6 (1987)

    Article  Google Scholar 

  3. Damianou, P.A., Sophocleous, C.: Symmetries of Hamiltonian systems with two degrees of freedom. J. Math. Phys. 15, 210 (1999)

    Article  MathSciNet  Google Scholar 

  4. Gorringe, V.M., Leach, P.G.L.: Lie point symmetries for systems of 2nd order linear ordinary differential equations. Quest. Math. 11(1), 95 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Wafo Soh, C., Mahomed, F.M.: Symmetry breaking for a system of two linear second-order ordinary differential equations. Nonlinear Dyn. 22, 121 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Wafo Soh, C., Mahomed, F.M.: Canonical forms for systems of two second-order ordinary differential equations. J. Phys. A, Math. Gen. 34, 2883 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Naeem, I., Mahomed, F.M.: First integrals for a general linear system of two second-order ODEs via a partial Lagrangian. J. Phys. A, Math. Theor. 41, 355207 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Leach, P.G.L., Gorringe, V.M.: The relationship between the symmetries of and the existence of conserved vectors for the equation \(\ddot{r}+f(t) L+g(r)\hat{r}=0\). J. Phys. A, Math. Gen. 23, 2765 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mahomed, F.M., Leach, P.G.L.: The linear symmetries of a nonlinear differential equation. Quaest. Math. 8, 241 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lie, S.: Klassifikation und Integration von gewönlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestaten. Arch. Math. VIII(IX), 187 (1883)

    Google Scholar 

  11. Tresse, A.: Sur les Invariants Différentiels des Groupes Continus de Transformations. Acta Math. 18, 1 (1894)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mahomed, F.M., Leach, P.G.L.: The Lie algebra sl(3,R) and linearization. Quaest. Math. 12, 121 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grissom, C., Thompson, G., Wilkens, G.: Linearization of second-order ordinary differential equations via Cartan’s equivalence method. J. Differ. Equ. 77, 1 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ibragimov, N.H., Magri, F.: Geometric proof of Lie’s linearization theorem. Nonlinear Dyn. 36, 41–46 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mahomed, F.M.: Point symmetry group classification of ordinary differential equations: a survey of some results. Math. Methods Appl. Sci. 30, 1995–2012 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mahomed, F.M., Leach, P.G.L.: Symmetry Lie algebras of nth order ordinary differential equations. J. Math. Anal. Appl. 151, 80 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wafo Soh, C., Mahomed, F.M.: Linearization criteria for a system of second–order ordinary differential equations. Int. J. Non-Linear Mech. 36, 671 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chern, S.S.: The geometry of the differential equation y‴=F(x,y,y,y″). Sci. Rep. Nat. Tsing Hua Univ. 4, 97–111 (1940)

    MathSciNet  Google Scholar 

  19. Grebot, G.: The characterization of third order ordinary differential equations admitting a transitive fibre-preserving point symmetry group. J. Math. Anal. Appl. 206, 364–388 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Neut, S., Petitot, M.: La géométrie de l’équation y‴=f(x,y,y′,y″). C. R. Acad. Sci. Paris Ser. I 335, 515–518 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Ibragimov, N.H., Meleshko, S.V.: On linearization of third-order ordinary differential equations. J. Phys. A., Math. Gen. Math. 39, 15135–15145 (2006)

    Article  Google Scholar 

  22. Ibragimov, N.H., Meleshko, S.V., Suksern, S.: Linearization of fourth-order ordinary differential equations by point transformations. J. Phys. A, Math. Theor. 41, 235206–19 (2008)

    Article  MathSciNet  Google Scholar 

  23. Mahomed, F.M., Qadir, A.: Conditional linearizability criteria for third order ordinary differential equations. J. Nonlinear Math. Phys. 15, 124 (2008)

    Article  MathSciNet  Google Scholar 

  24. Mahomed, F.M., Qadir, A.: Linearization criteria for a system of second order quadratically semi-linear ordinary differential equations. Nonlinear Dyn. 48, 417–422 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mahomed, F.M., Qadir, A.: Invariant linearization criteria for systems of cubically nonlinear second-order ordinary differential equations. J. Nonlinear Math. Phys. 16(3), 283–298 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bagderina, Y.Y.: Linearization criteria for a system of two second-order ordinary differential equations. J. Phys. A, Math. Theor. 43, 465201 (2010) (14 pp.)

    Article  MathSciNet  Google Scholar 

  27. Euler, N., Wolf, T., Leach, P.G.L., Euler, M.: Linearisable third-order ordinary differential equations and generalised Sundman transformation: the case x‴=0. Acta Appl. Math. 76(1), 89–115 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Popovych, R.O., Boyko, V.M., Nesterenko, M.O., Lutfullin, M.W.: Realizations of real low-dimensional Lie algebras. J. Phys. A, Math. Gen. 36(26), 7337 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ayub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayub, M., Khan, M. & Mahomed, F.M. Algebraic linearization criteria for systems of ordinary differential equations. Nonlinear Dyn 67, 2053–2062 (2012). https://doi.org/10.1007/s11071-011-0128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0128-x

Keywords

Navigation