Skip to main content
Log in

Pattern dynamics of a spatial predator–prey model with noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A spatial predator–prey model with colored noise is investigated in this paper. We find that the number of the spotted pattern is increased as the noise intensity is increased. When the noise intensity and temporal correlation are in appropriate levels, the model exhibits phase transition from spotted to stripe pattern. Moreover, we show the number of the spotted and stripe pattern, with respect to both noise intensity and temporal correlation. These studies raise important questions on the role of noise in the pattern formation of the populations, which may well explain some data obtained in the ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245, 220–229 (2007)

    Article  MathSciNet  Google Scholar 

  2. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.-L.: Spatio-temporal complexity of plankton and fish dynamics in simple model ecosystems. SIAM Rev. 44, 311–370 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Pattern formation induced by cross-diffusion in a predator–prey system. Chin. Phys. B 17, 3936–3941 (2008)

    Article  Google Scholar 

  4. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Dynamical complexity of a spatial predator–prey model with migration. Ecol. Model. 219, 248–255 (2008)

    Article  Google Scholar 

  5. Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    MATH  Google Scholar 

  6. Garvie, M.R.: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in Matlab. Bull. Math. Biol. 69, 931–956 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Garvie, M.R., Trenchea, C.: Finite element approximations of spatially extended predator–prey interactions with the Holling type II functional response. Numer. Math. 107, 641–667 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Holling, C.S.: Resilience and stability of ecological systems. Ann. Rev. Ecolog. Syst. 4, 1–23 (1973)

    Article  Google Scholar 

  9. Folke, C., Carpenter, S.R., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L.H., Holling, C.: Regime shifts resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004)

    Article  Google Scholar 

  10. Richter, O.: Spatio-temporal patterns of gene flow and dispersal under temperature increase. Math. Biosci. 218, 15–23 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Scheffer, M., Rinaldi, S., Kuznetsov, Y.A., van Nes, E.H.: Seasonal dynamics of daphnia and algae explained as a periodically forced predator–prey system. Oikos 80, 519–532 (1997)

    Article  Google Scholar 

  12. Scheffer, M., Rinaldi, S.: Minimal models of top-down control of phytoplankton. Freshw. Biol. 45, 265–283 (2000)

    Article  Google Scholar 

  13. Guttal, V., Jayaprakash, C.: Impact of noise on bistable ecological systems. Ecol. Model. 201, 420–428 (2007)

    Article  Google Scholar 

  14. García-Ojalvo, J., Sancho, J.M.: Noise in Spatially Extended Systems. Springer, New York (1999)

    Book  MATH  Google Scholar 

  15. Horsthemke, W., Lefever, R.: Noise-Induced Transitions. Springer, Berlin (1984)

    MATH  Google Scholar 

  16. Lesmes, F., Hochberg, D., Morán, F., Pérez-Mercader, J.: Noise-controlled self-replicating patterns. Phys. Rev. Lett. 91, 238301 (2003)

    Article  Google Scholar 

  17. Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)

    Article  Google Scholar 

  18. Vilar, J.M.G., Sole, R.V.: Effects of noise in symmetric two-species competition. Phys. Rev. Lett. 80, 4099 (1998)

    Article  Google Scholar 

  19. Scheffer, M., Carpenter, S., Foley, J., Folke, C., Walker, B.: Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)

    Article  Google Scholar 

  20. Giardina, I., Bouchaud, J.P., Mezard, M.: Proliferation assisted transport in a random environment. J. Phys. A, Math. Gen. 34, L245–252 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Staliunas, K.: Spatial and temporal noise spectra of spatially extended systems with order–disorder phase transitions. Int. J. Bifurc. Chaos Appl. Sci. Eng. 11, 2845–2852 (2001)

    Article  Google Scholar 

  22. Bjornstad, O.N., Grenfell, B.T.: Noisy clockwork: time series analysis of population fluctuations in animals. Science 293, 638–643 (2001)

    Article  Google Scholar 

  23. Mantegna, R.N., Spagnolo, B.: Stochastic resonance in a tunnel diode. Phys. Rev. E 49, R1792–R1795 (1994)

    Article  Google Scholar 

  24. Mantegna, R.N., Spagnolo, B.: Noise enhanced stability in an unstable system. Phys. Rev. Lett. 76, 563–566 (1996)

    Article  Google Scholar 

  25. Spagnolo, B., Fiasconaro, A., Valenti, D.: Noise induced phenomena in Lotka–Volterra systems. Fluct. Noise Lett. 3, L177–L185 (2003)

    Article  Google Scholar 

  26. Valenti, D., Fiasconaro, A., Spagnolo, B.: Stochastic resonance and noise delayed extinction in a model of two competing species. Physica A 331, 477–486 (2004)

    Article  MathSciNet  Google Scholar 

  27. Braza, P.A.: The bifurcation structure of the Holling–Tanner model for predator–prey interactions using two-timing. SIAM J. Appl. Math. 63, 889–904 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Collings, J.B.: Bifurcation and stability analysis of a temperature-dependent mite predator–prey interaction model incorporating a prey refuge. Bull. Math. Biol. 57, 63–76 (1995)

    MATH  Google Scholar 

  29. Hsu, S.B., Huang, T.W.: Global stability for a class of predator–prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wollkind, D.J., Collings, J.B., Logan, J.A.: Metastability in a temperature-dependent model system for predator–prey mite outbreak interactions on fruit flies. Bull. Math. Biol. 50, 379–409 (1988)

    MATH  MathSciNet  Google Scholar 

  31. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)

    Google Scholar 

  32. Reichenbach, T., Mobilia, M., Frey, E.: Noise and correlations in a spatial population model with cyclic competition. Phys. Rev. Lett. 99, 238105 (2007)

    Article  Google Scholar 

  33. Reichenbach, T., Mobilia, M., Frey, E.: Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games. Nature 448, 1046–1049 (2007)

    Article  Google Scholar 

  34. Liu, Q.-X., Li, B.-L., Jin, Z.: Resonance and frequency-locking phenomena in a spatially extended phytoplankton–zooplankton system with additive noise and periodic forces. J. Stat. Mech. Theory Exp. 5, P05011 (2008)

    Article  Google Scholar 

  35. Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354–359 (1999)

    Article  Google Scholar 

  36. Mankin, R., Ainsaar, A., Haljas, A., Reiter, E.: Trichotomous-noise-induced catastrophic shifts in symbiotic ecosystems. Phys. Rev. E 65, 051108 (2002)

    Article  Google Scholar 

  37. Mankin, R., Sauga, A., Ainsaar, A., Haljas, A., Paunel, K.: Colored-noise-induced discontinuous transitions in symbiotic ecosystems. Phys. Rev. E 69, 061106 (2004)

    Article  Google Scholar 

  38. Sun, G.-Q., Li, L., Jin, Z., Li, B.-L.: Effect of noise on the pattern formation in an epidemic model. Num. Methods Partial Differ. Equ. 26, 1168–1179 (2010)

    MATH  MathSciNet  Google Scholar 

  39. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Petrovskii, S., Li, B.L., Malchow, H.: Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex. 1, 37–47 (2004)

    Article  Google Scholar 

  41. Malchow, H., Petrovskii, S.V., Venturino, E.: Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulations. Chapman & Hall/CRC, London (2008)

    MATH  Google Scholar 

  42. Sun, G.-Q., Jin, Z., Li, L., Liu, Q.-X.: The role of noise in a predator–prey model with allee effect. J. Biol. Phys. 35, 185–196 (2009)

    Article  Google Scholar 

  43. Sun, G.-Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. 58, 75–84 (2009)

    Article  MATH  Google Scholar 

  44. Freund, J.A., Schimansky-Geier, L., Beisner, B., Neiman, A., Russell, D.F., Yakusheva, T., Moss, F.: Behavioral stochastic resonance: how the noise from a daphnia swarm enhances individual prey capture by juvenile paddlefish. J. Theor. Biol. 214, 71–83 (2002)

    Article  Google Scholar 

  45. Sun, G.-Q., Liu, Q.-X., Jin, Z., Chakraborty, A., Li, B.-L.: Influence of infection rate and migration on extinction of disease in spatial epidemics. J. Theor. Biol. 264, 95–103 (2010)

    Article  Google Scholar 

  46. Tanner, J.T.: The stability and the intrinsic growth rates of prey and predator populations. Ecology 56, 855–867 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Jin, Z. Pattern dynamics of a spatial predator–prey model with noise. Nonlinear Dyn 67, 1737–1744 (2012). https://doi.org/10.1007/s11071-011-0101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0101-8

Keywords

Navigation