Skip to main content
Log in

Computation of phase response curves via a direct method adapted to infinitesimal perturbations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new numerical algorithm for computation of phase response curves of stable limit cycle oscillators is proposed. The idea of the algorithm originates from a direct method that is based on computation of the oscillator response to short finite pulses delivered at different phases of oscillations. Here we adapt the direct method to the case of infinitesimal perturbations and compare our algorithm with the standard algorithm based on the backward integration of the adjoint equations. In contrast to the standard algorithm, our algorithm does not require any backward integration and it is easier to program since a necessity of numerical interpolation for the Jacobian matrix is avoided. In addition, we demonstrate by examples that our algorithm is faster than the standard algorithm and this advantage is especially notable for weakly stable limit cycle oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Dover, New York (2003)

    Google Scholar 

  2. Pikovsky, A., Rosemblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  3. Winfree, A.: The Geometry of Biological Time. Springer, New York (2001)

    MATH  Google Scholar 

  4. Hastings, J.W., Sweeney, B.M.: A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol. Bull. 115, 440–458 (1958)

    Article  Google Scholar 

  5. Johnson, C.H.: Forty years of PRC—what have we learned? Chronobiol. Int. 16, 711–743 (1999)

    Article  Google Scholar 

  6. Winfree, A.T.: When Time Breaks Down. Princeton University Press, Princeton (1987)

    Google Scholar 

  7. Ikeda, N.: Model of bidirectional interaction between myocardial pacemakers based on the phase response curve. Biol. Cybern. 43, 157–167 (1982)

    Article  MATH  Google Scholar 

  8. Tsalikakisa, D.G., Zhangb, H.G., Fotiadisa, D.I., Kremmydasa, G.P., Michalis, L.K.: Phase response characteristics of sinoatrial node cells. Comput. Biol. Med. 37, 8–20 (2007)

    Article  Google Scholar 

  9. Ermentrout, G.B., Kopell, N.: Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29, 195–217 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ermentrout, G.B.: Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM J. Appl. Math. 52, 1665–1687 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ermentrout, B.: Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8, 979–1001 (1996)

    Article  Google Scholar 

  12. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  13. Tass, P.: Phase Resetting in Medicine and Biology. Springer, Berlin (1999)

    MATH  Google Scholar 

  14. Stiger, T., Danzl, P., Moehlis, J., Netoff, T.I.: Linear control of neuronal spike timing using phase response curves. J. Med. Devices 4, 027533 (2010)

    Article  Google Scholar 

  15. Reyes, A.D., Fetz, E.E.: Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. J. Neurophysiol. 69, 1661–1672 (1993)

    Google Scholar 

  16. Galan, R.F., Ermentrout, G.B., Urban, N.N.: Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Phys. Rev. Lett. 94, 158101 (2005)

    Article  Google Scholar 

  17. Tateno, T., Robinson, H.P.C.: Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex. Biophys. J. 92, 683–695 (2007)

    Article  Google Scholar 

  18. Brown, E., Moehlis, J., Holmes, P.: On the phase reduction and response dynamics of neural oscillator populations. Neural Comput. 16, 673–715 (2004)

    Article  MATH  Google Scholar 

  19. Kuznetsov, A.P., Stankevich, N.V., Turukina, L.V.: Coupled van der Pol–Duffing oscillators: phase dynamics and structure of synchronization tongues. Physica D 238, 1203–1215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sherwood, E.W., Guckenheimer, J.: Dissecting the phase response of a model bursting neuron. SIAM J. Appl. Dyn. Syst. 9, 659–703 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guillamon, A., Huguet, G.: A computational and geometric approach to phase resetting curves and surfaces. SIAM J. Appl. Dyn. Syst. 8, 1005–1042 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guevara, M.R., Glass, L., Mackey, M.C., Shier, A.: Chaos in neurobiology. IEEE Trans. Syst. Man Cybern. 13(5), 790–798 (1983)

    MATH  Google Scholar 

  23. Ermentrout, G.: Simulating, Analysing, and Animating Dynamical Systems: A Guide to XXPAUT for Researchers and Students. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  24. Govaerts, W., Sautois, B.: Computation of the phase response curve: a direct numerical approach. Neural Comput. 18, 817–847 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Malkin, I.G.: Methods of Poincaré and Lyapunov in Theory of Non-linear Oscillations. Gostexizdat, Moscow (1949) (in Russian: Metodi Puankare i Liapunova v teorii nelineinix kolebanii)

    Google Scholar 

  26. Malkin, I.G.: Some Problems in Nonlinear Oscillation Theory. Gostexizdat, Moscow (1956) (in Russian: Nekotorye zadachi teorii nelineinix kolebanii)

    Google Scholar 

  27. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997)

    Book  Google Scholar 

  28. Winfree, A.: Patterns of phase compromise in biological cycles. J. Math. Biol. 1, 73–95 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guckenheimer, J.: Isochrons and phaseless sets. J. Math. Biol. 1, 259–273 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Article  Google Scholar 

  31. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  32. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B, Biol. Sci. 221, 87–102 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Novičenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novičenko, V., Pyragas, K. Computation of phase response curves via a direct method adapted to infinitesimal perturbations. Nonlinear Dyn 67, 517–526 (2012). https://doi.org/10.1007/s11071-011-0001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0001-y

Keywords

Navigation