Skip to main content
Log in

Hopf bifurcation and spatio-temporal patterns in delay-coupled van der Pol oscillators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of a pair of van der Pol oscillators with delayed velocity coupling is studied by taking the time delay as a bifurcation parameter. We first investigate the stability of the zero equilibrium and the existence of Hopf bifurcations induced by delay, and then study the direction and stability of the Hopf bifurcations. Then by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups, we investigate the spatio-temporal patterns of Hopf bifurcating periodic oscillations. We find that there are different in-phase and anti-phase patterns as the coupling time delay is increased. The analytical theory is supported by numerical simulations, which show good agreement with the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710, 754–762 (1920)

  2. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer, Berlin (1990)

    MATH  Google Scholar 

  3. Atay, F.M.: Van der Pol’s oscillator under delayed feedback. J. Sound Vib. 218(2), 333–339 (1998)

    Article  MathSciNet  Google Scholar 

  4. Wei, J., Jiang, W.: Stability and bifurcation analysis in Van der Pol’s oscillator with delayed feedback. J. Sound Vib. 283, 801–819 (2005)

    Article  MathSciNet  Google Scholar 

  5. Radparvar, K., Kaplan, B.Z.: Experimental and analytical investigations of synchronization dynamics of two coupled multivibrators. IEEE Trans. Circ. Syst. 32, 1072–1078 (1985)

    Article  Google Scholar 

  6. Saito, T.: On a coupled relaxation oscillator. IEEE Trans. Circ. Syst. 35, 1147–1155 (1988)

    Article  MATH  Google Scholar 

  7. Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications. Springer, New York (1987)

    MATH  Google Scholar 

  8. Hohl, A., Gavrielides, A., Erneux, T., Kovanis, V.: Localized synchronization in two coupled nonidentical semiconductor lasers. Phys. Rev. Lett. 78, 4745–4748 (1997)

    Article  Google Scholar 

  9. Ramana Reddy, D.V., Sen, A., Johnston, G.L.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80, 5109–5112 (1998)

    Article  Google Scholar 

  10. Ramana Reddy, D.V., Sen, A., Johnston, G.L.: Time delay effects on coupled limit cycle oscillators at Hopf bifurcation. Physica D 129, 335–357 (1999)

    Article  MathSciNet  Google Scholar 

  11. Campbell, S.A., Edwards, R., Van den Driessche, P.: Delayed coupling between two neural network loops. SIAM J. Appl. Math. 65(1), 316–335 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Song, Y., Wei, J., Yuan, Y.: Stability switches and Hopf bifurcations in a pair of delay-coupled oscillators. J. Nonlinear Sci. 17, 145–166 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Song, Y., Makarov, V.A., Velarde, M.G.: Stability switches, oscillatory multistability, and spatio-temporal patterns of nonlinear oscillations in recurrently delay coupled neural networks. Biol. Cybern. 101, 147–167 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Song, Y., Tade, M., Zhang, T.: Bifurcation analysis and spatio-temporal patterns of nonlinear oscillations in a delayed neural network with unidirectional coupling. Nonlinearity 22, 975–1001 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. York, R.A., Compton, R.C.: Quasi-optical power combining using mutually synchronized oscillator arrays. IEEE Trans. Microw. Theory Tech. 39, 1000–1009 (1991)

    Article  Google Scholar 

  16. York, R.A., Compton, R.C.: Experimental observation and simulation of mode-locking phenomena in coupled-oscillator arrays. J. Appl. Phys. 71, 2959–2965 (1992)

    Article  Google Scholar 

  17. York, R.A.: Nonlinear analysis of phase relationships in quasi-optical oscillator arrays. IEEE Trans. Microw. Theory Tech. 41, 1799–1809 (1993)

    Article  Google Scholar 

  18. Lynch, J.J., York, R.A.: Stability of mode locked states of coupled oscillator arrays. IEEE Trans. Circ. Syst. 42, 413–417 (1995)

    Article  Google Scholar 

  19. Kuntsevich, B.F., Pisarchik, A.N.: Synchronization effects in a dual-wavelength class-B laser with modulated losses. Phys. Rev. E 64, 046221 (2001)

    Article  Google Scholar 

  20. Wirkus, S., Rand, R.H.: The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn. 30, 205–221 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sen, A.K., Rand, R.H.: A numerical investigation of the dynamics of a system of two time-delay coupled relaxation oscillations. Commun. Pure Appl. Anal. 2(4), 567–577 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Li, X., Ji, J., Hansen, C.H.: Dynamics of two delay coupled van der Pol oscillators. Mech. Res. Commun. 33, 614–627 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  24. Ruan, S.: Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays. Q. Appl. Math. 59, 159–173 (2001)

    MATH  Google Scholar 

  25. Song, Y., Han, M., Peng, Y.: Stability and Hopf bifurcations in a competitive Lotka–Volterra system with two delays. Chaos Solitons Fractals 22, 1139–1148 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Faria, T., Magalháes, L.T.: Normal form for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122, 181–200 (1995)

    Article  MATH  Google Scholar 

  27. Faria, T., Magalháes, L.T.: Normal form for retarded functional differential equations and applications to Bogdanov–Takens singularity. J. Differ. Equ. 122, 201–224 (1995)

    Article  MATH  Google Scholar 

  28. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)

    MATH  Google Scholar 

  29. Wu, J.: Symmetric functional-differential equations and neural networks with memory. Trans. Am. Math. Soc. 350, 4799–4838 (1998)

    Article  MATH  Google Scholar 

  30. Golubitsky, M., Stewart, I., Schaeffer, D.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, New York (1988)

    MATH  Google Scholar 

  31. Guo, S., Lamb, S.W.: Equivariant Hopf bifurcation for neural functional differential equations. Proc. Am. Math. Soc. 136, 2031–2041 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y. Hopf bifurcation and spatio-temporal patterns in delay-coupled van der Pol oscillators. Nonlinear Dyn 63, 223–237 (2011). https://doi.org/10.1007/s11071-010-9799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9799-y

Keywords

Navigation