Skip to main content
Log in

Zero-Hopf bifurcation in the Van der Pol oscillator with delayed position and velocity feedback

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider the traditional Van der Pol oscillator with a forcing dependent on a delay in feedback. The delay is taken to be a nonlinear function of both position and velocity, which gives rise to many different types of bifurcations. In particular, we study the Zero-Hopf bifurcation that takes place at certain parameter values using methods of center manifold reduction of DDEs and normal form theory. We present numerical simulations that have been accurately predicted by the phase portraits in the Zero-Hopf bifurcation to confirm our numerical results and provide a physical understanding of the oscillator with the delay in feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Atay, F.M.: Van der Pol’s oscillator under delayed feedback. J. Sound Vib. 218, 333–339 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Augusti, G.: Instability of struts subject to radiant heat. Meccanica 3, 167–176 (1968)

    Article  Google Scholar 

  3. Beuter, A., Bélair, J., Labrie, C.: Feedback and delays in neurological diseases : a modeling study using dynamical systems. Bull. Math. Biol. 55, 525–541 (1993)

    MATH  Google Scholar 

  4. Bramburger, J., Dionne, B., LeBlanc, V.G.: Zero-Hopf bifurcation in the Van der Pol oscillator with delayed position and velocity feedback. arXiv:1402.5866, (2014)

  5. Cartwright, J.H.E., Eguiluz, V.M., Hernandez-Garcia, E., Piro, O.: Dynamics of elastic excitable media. Int. J. Bifurcat. Chaos 9, 2197–2202 (1999)

    Article  MATH  Google Scholar 

  6. de Oliveira, J.C.F.: Oscillations in a van der Pol equation with delayed argument. J. Math. Anal. Appl. 275, 789–803 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Edelman, K., Gendelman, O.: Dynamics of self-excited oscillators with neutral delay coupling. Nonlinear Dyn. 73, 683–694 (2013)

    Article  MathSciNet  Google Scholar 

  8. Faria, T., Magalhães, L.T.: Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity. J. Differ. Equ. 122, 201–224 (1995)

    Article  MATH  Google Scholar 

  9. Faria, T., Magalhães, L.T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122, 181–200 (1995)

    Article  MATH  Google Scholar 

  10. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcation of vector fields. Springer-Verlag, New York (1983)

    Book  Google Scholar 

  11. Hale, J.K., Verduyn Lunel, S.M.: Introduction to functional differential equations. Appl. Math. Sci., vol. 99. Springer, New York (1993)

  12. Heil, T., Fischer, I., Elsäßer, W., Krauskopf, B., Green, K., Gavrielides, A.: Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms. Phys. Rev. E 67, 066214-1–066214-11 (2003)

    Article  Google Scholar 

  13. Holmes, P.J.: Bifurcations to divergence and flutter in flow-induced oscillations: a finite dimensional analysis. J. Sound Vib. 53, 471–503 (1977)

    Article  MATH  Google Scholar 

  14. Ji, J., Zhang, N.: Additive resonances of a controlled Van der Pol-Duffing oscillator. J. Sound Vib. 315, 22–33 (2008)

    Article  Google Scholar 

  15. Jiang, W., Yuan, Y.: Bogdanov-takens singularity in Van der Pol’s oscillator with delayed feedback. Phys. D 227, 149–161 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kaplan, B.Z., Gabay, I., Sarafian, G., Sarafian, D.: Biological applications of the filtered Van der Pol oscillator. J. Franklin Inst. 345, 226–232 (2008)

    Article  MATH  Google Scholar 

  17. Kuang, Y.: Delay differential equations with applications in population dynamics. Mathematics in science and engineering, 191st edn. Academic Press, Boston (1993)

    Google Scholar 

  18. Kuznetsov, Y.A.: Elements of applied bifurcation theory, 3rd edn. Springer-Verlag, New York (2004)

    Book  MATH  Google Scholar 

  19. Longtin, A., Milton, J.G.: Modeling autonomous oscillations in the human pupil light reflex using nonlinear delay-differential equations. Bull. Math. Biol. 51, 605–624 (1989)

  20. Luongo, A., Di Egidio, A.: Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam. Comput. Struct. 84, 1596–1605 (2006)

    Article  Google Scholar 

  21. Luongo, A., Di Egidio, A., Paolone, A.: Multiple time scale analysis for bifurcation from a multiple-zero eigenvalue. AIAA J. 41, 1143–1150 (2003)

    Article  Google Scholar 

  22. Luongo, A., Paolone, A., Di Egidio, A.: Multiple time scales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dyn. 34, 269–291 (2003)

    Article  MATH  Google Scholar 

  23. Luongo, A., Zulli, D.: A paradigmatic system to study the transition from zero/Hopf to double-zero/Hopf bifurcation. Nonlinear Dyn. 70, 111–124 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Maccari, A.: Vibration amplitude control for a Van der Pol-Duffing oscillator with time delay. J. Sound Vib. 317, 20–29 (2008)

    Article  Google Scholar 

  25. Nayfeh, A.H.: Order reduction of retarded nonlinear systems-the method of multiple scales versus center-manifold reduction. Nonlinear Dyn. 51, 483–500 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sieber, J., Krauskopf, B.: Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity. Nonlinearity 17, 85–103 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stone, E., Campbell, S.A.: Stability and bifurcation analysis of a nonlinear DDE model for drilling. J. Nonlinear Sci. 14, 27–57 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Suarez, M.J., Schopf, P.L.: A delayed action oscillator for ENSO. J. Atmos. Sci. 45, 3283–3287 (1988)

    Article  Google Scholar 

  29. Suchorsky, M.K., Sah, S.M., Rand, R.H.: Using delay to quench undesirable vibrations. Nonlinear Dyn. 62, 407–416 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vladimirov, A.G., Turaev, D., Kozyreff, G.: Delay differential equations for mode-locked semiconductor lasers. Opt. Lett. 29, 1221–1223 (2004)

    Article  Google Scholar 

  31. Wei, J., Jiang, W.: Stability and bifurcation analysis in Van der Pol’s oscillator with delayed feedback. J. Sound Vib. 283, 801–819 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wei, J., Jiang, W.: Bifurcation analysis in van der Pol’s oscillator with delayed feedback. J. Comput. Appl. Math. 213, 604–615 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wu, X., Wang, L.: Zero-Hopf bifurcation for van der Pol’s oscillator with delayed feedback. J. Comput. Appl. Math. 235, 2586–2602 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wu, X., Wang, L.: Zero-Hopf singularity for general delayed differential equations. Nonlinear Dyn. 75, 141–155 (2014)

    Article  MATH  Google Scholar 

  35. Zhang, C., Wei, J.: Stability and bifurcation analysis in a kind of business cycle model with delay. Chaos Solitons Fractals 22, 883–896 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is partly supported by the Natural Sciences and Engineering Research Council of Canada in the form of a Discovery Grant (BD and VL), and by an Ontario Graduate Scholarship (JB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G. LeBlanc.

Proof of Theorem 1

Proof of Theorem 1

First, let \(V_j(\mathbb {C}^3\ \times \) Ker \(\pi )\) be the space of homogeneous polynomials of degree \(j\) in the variables \((x,\mu )\) with coefficients in \(\mathbb {C}^3\ \times \) Ker \(\pi \). Define \(M_j: V_j(\mathbb {C}^3\ \times \) Ker \(\pi ) \rightarrow V_j(\mathbb {C}^3\ \times \) Ker \(\pi )\) such that

$$\begin{aligned} M_j(p,h) = (M^1_jp,M^2_jh) \end{aligned}$$
(64)

where

$$\begin{aligned} M_j^1p(x,\mu )&= D_xp(x,\mu )Jx - Jp(x,\mu ) \nonumber \\&= i\omega \left( \begin{array}{cc} x_1\dfrac{\partial p_1}{\partial x_1} - x_2\dfrac{\partial p_1}{\partial x_2} - p_1 \\ x_1\dfrac{\partial p_2}{\partial x_1} - x_2\dfrac{\partial p_2}{\partial x_2} + p_2 \\ x_1\dfrac{\partial p_3}{\partial x_1} - x_2 \dfrac{\partial p_3}{\partial x_2} \end{array} \right) , \\ M_j^2h(x,\mu )&= D_xh(x,\mu )Jx - \mathcal {A}_{Q^1}h(x,\mu ),\nonumber \end{aligned}$$
(65)

with \(p(x,\mu ) \in V_j(\mathbb {C}^3)\) and \(h(x,\mu )(\theta ) \in V_j(\hbox {Ker} \pi )\). We now have the decomposition \(V_j(\mathbb {C}^3) = \mathrm{Im}(M^1_j) \otimes \mathrm{Ker}(M^1_j)\) for \(j \ge 2\).

Introduce the nonlinear change of coordinates

$$\begin{aligned} x&= \hat{x} + U_2^1(\hat{x},\mu ) \nonumber \\ y&= \hat{y} + U_2^2(\hat{x},\mu ), \end{aligned}$$
(66)

where

$$\begin{aligned} U_2^1(x,\mu )&= (M_1^1)^{-1}Proj_{\mathrm{Im}(M_2^1)}f_2^1(x,0,\mu ), \nonumber \\ U_2^2(x,\mu )&= (M_2^2)^{-1}f_2^2(x,0,\mu ). \end{aligned}$$
(67)

Equation (40) now becomes

$$\begin{aligned}&\dot{x} =(I + D_xU_2^1(x,\mu ))^{-1}\big [Jx + JU_2^1(x,\mu ) \nonumber \\&\qquad +\sum _{j \ge 2}f_j^1(x+U_2^1(x,\mu ),y+U_2^2(x,\mu ))\big ] \nonumber \\&\frac{d}{dt}y = \mathcal {A}_{Q^1}y + \mathcal {A}_{Q^1}U_2^2(x,\mu ) - D_xU_2^2(x,\mu )\dot{x} \nonumber \\&\qquad \qquad +\sum _{j \ge 2} f_j^2(x+U_2^1(x,\mu ),y+U_2^2(x,\mu ))\nonumber \\ \end{aligned}$$
(68)

upon dropping the hats.

For \(|x|\) small, we have that

$$\begin{aligned} (I + D_xU_2^1(x,\mu ))^{-1}&\approx I - D_xU_2^1(x,\mu )\nonumber \\&\quad + (D_xU_2^1(x,\mu ))^2, \end{aligned}$$
(69)

and using Taylor’s theorem, we obtain

$$\begin{aligned}&f_2^1(x+U_2^1(x,\mu ),y+U_2^2(x,\mu )) = f_2^1(x,y) \\&\quad +D_xf^1_2(x,y)U_2^1(x,\mu ) \\&\quad + D_yf^1_2(x,y)U_2^2(x,\mu ) + \mathrm {h.o.t.} \end{aligned}$$

Therefore, we now have the normal form on the center manifold given by

$$\begin{aligned} \dot{x} = Jx + g^1_2(x,0,\mu ) + \mathrm {h.o.t.} \end{aligned}$$
(70)

where \(g^1_2\) are the following second-order terms in \((x,\mu )\):

$$\begin{aligned} g_2^1(x,0,\mu ) = Proj_{Ker(M_2^1)}f_2^1(x,0,\mu ) \end{aligned}$$
(71)

Consider the basis \(\{\mu ^px^qe_k: k=1,2,3, p \in \mathbb {N}^2_0, q \in \mathbb {N}^3_0, |p| + |q| = j\}\) of \(V_j(\mathbb {C}^3)\), where \(e_1=(1,0,0)^T\), \(e_2 = (0,1,0)^T\), and \(e_3 = (0,0,1)^T\). Then, for \(j=2\), upon finding the images of each basis element under \(M_2^1\), we find that Ker\((M_2^1)\) is spanned by

$$\begin{aligned}&\mu _1x_1e_1, \mu _2x_1e_1, x_1x_3e_1,\\&\mu _1x_2e_2, \mu _2x_2e_2, x_2x_3e_2,\\&x_1x_2e_3, \mu _1x_3e_3, \mu _2x_3e_3, \mu _1^2e_3, \mu _2^2e_3, \mu _1\mu _2e_3, x_3^2e_3. \end{aligned}$$

To see the images of each of these individual basis elements under the operator \(M_2^1\) see [33],

we now compute \(g_2^1(x,0,\mu )\) in (70). We have that

$$\begin{aligned}&g_2^1(x,0,\mu ) = Proj_{\mathrm{Ker}(M_2^1)}f_2^1(x,0,\mu ) + \mathcal {O}(|\mu |^2) \nonumber \\&\quad = \begin{pmatrix} (a_{11}\mu _1 + a_{12}\mu _2)x_1 + a_{13}x_1x_3 \\ (\bar{a}_{11}\mu _1 + \bar{a}_{12}\mu _2)x_2 + \bar{a}_{13}x_2x_3 \\ (a_{21}\mu _1 + a_{22}\mu _2)x_3 + a_{23}x_1x_2 + a_{24}x_3^2 \end{pmatrix}\nonumber \\&\quad + \mathcal {O}(|\mu |^2). \end{aligned}$$
(72)

Now, expanding out the terms in (41), we get

$$\begin{aligned}&F^1_2 = \mu _2(i\omega _0x_1 - i\omega _0x_2 + y_2(0)), \ \ \ \ \ F^1_3 = 0, \nonumber \\&F^2_2 = -\mu _2(x_1 + x_2 + x_3 + y_1(0))\nonumber \\&\quad +\varepsilon \mu _2(i\omega _0x_1 - i\omega _0x_2\nonumber \\&\quad + y_2(0)) +a\mu _2(i\omega _0e^{-i\omega _0\tau _0}x_1\nonumber \\&\qquad -i\omega _0e^{i\omega _0\tau _0}x_2 + y_2(-1))\nonumber \\&\quad +\tau _0\mu _1(e^{-i\omega _0\tau _0}x_1 + e^{i\omega _0\tau _0}x_2+ x_3 +y_1(-1))\nonumber \\&\quad +\mu _2(e^{-i\omega _0\tau _0}x_1+ e^{i\omega _0\tau _0}x_2 +x_3+ y_1(-1)) \nonumber \\&\quad +\frac{1}{2}\tau _0g_{u_1u_1}(0,0)(e^{-i\omega _0\tau _0}x_1+e^{i\omega _0\tau _0}x_2 \nonumber \\&\qquad + x_3 + y_1(-1))^2\nonumber \\&\quad +\tau _0g_{u_1u_2}(0,0)(e^{-i\omega _0\tau _0}x_1+e^{i\omega _0\tau _0}x_2 + x_3 \nonumber \\&\quad +y_1(-1))(i\omega _0e^{-i\omega _0\tau _0}x_1 - i\omega _0e^{i\omega _0\tau _0}x_2+ y_2(-1)) \nonumber \\&\quad +\frac{1}{2}\tau _0g_{u_2u_2}(0,0)(i\omega _0e^{-i\omega _0\tau _0}x_1\nonumber \\&\qquad - i\omega _0e^{i\omega _0\tau _0} x_2 + y_2(-1))^2. \end{aligned}$$
(73)

Therefore, recalling that the characteristic equation gives us \((1+ia\omega _0)e^{-i\omega _0\tau _0} = -\omega _0^2 - i\varepsilon \omega _0 + 1\), we compute the coefficients in (72) to be

$$\begin{aligned} a_{11}&= \tau _0\bar{D}\bar{\sigma }e^{-i\omega _0\tau _0}, \ \ \ a_{12} = \bar{D}(i\omega _0 - \bar{\sigma }\omega _0^2), \nonumber \\ a_{13}&= \tau _0\bar{D}\bar{\sigma }(g_{u_1u_1}(0,0)e^{-i\omega _0\tau _0}\nonumber \\&\quad +i\omega _0g_{u_1u_2}(0,0)e^{-i\omega _0\tau _0}), \nonumber \\ a_{21}&= \frac{\tau _0}{\tau _0 - \varepsilon - a}, \ \ a_{22} = 0, \ \ a_{24} = \frac{1}{2}a_{21}g_{u_1u_1}(0,0) \nonumber \\ a_{23}&= a_{21}(g_{u_1u_1}(0,0) + \omega _0^2g_{u_2u_2}(0,0)). \end{aligned}$$
(74)

We thus get the desired conclusion. As mentioned earlier, the computations required to get the formulae for the cubic coefficients of the normal form are lengthy, but straightforward and standard. We omit the details here because we only require the quadratic order normal form (50) for our analysis, but the details can be found in [4].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bramburger, J., Dionne, B. & LeBlanc, V.G. Zero-Hopf bifurcation in the Van der Pol oscillator with delayed position and velocity feedback. Nonlinear Dyn 78, 2959–2973 (2014). https://doi.org/10.1007/s11071-014-1638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1638-0

Keywords

Mathematics Subject Classification

Navigation