Skip to main content
Log in

Simulation of planar flexible multibody systems with clearance and lubricated revolute joints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Modeling of clearance joints plays an important role in the analysis and design of multibody mechanical systems. Based on the absolute nodal coordinate formulation (ANCF), a new computational methodology for modeling and analysis of planar flexible multibody systems with clearance and lubricated revolute joints is presented. A planar absolute nodal coordinate formulation based on the locking-free shear deformable beam element is implemented to discretize the flexible bodies. A continuous contact-impact model is used to evaluate the contact force, in which energy dissipation in the form of hysteresis damping is considered. A force transition model from hydrodynamic lubrication forces to dry contact forces is introduced to ensure continuity in the joint reaction force. A comprehensive study with different lubrication force models has also been carried out. The generalized-α method is used to solve the equations of motion and several efficient methods are incorporated in the proposed model. Finally, the methodology is validated by two numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubowsky, S., Freudenstein, F.: Dynamic analysis of mechanical systems with clearances, part 1: Formulation of dynamic model. J. Eng. Ind. 93(1), 305–309 (1971)

    Google Scholar 

  2. Dubowsky, S., Freudenstein, F.: Dynamic analysis of mechanical systems with clearances, part 2: Dynamics response. J. Eng. Ind. 93(1), 310–316 (1971)

    Google Scholar 

  3. Earles, S.W.E, Wu, C.L.S.: Motion analysis of a rigid link mechanism with clearance at a bearing using Lagrangian mechanics and digital computation. In: Mechanisms (Proceedings, Institution of Mechanical Engineers), London, pp. 83–89 (1973)

  4. Erkaya, S., Uzmay, İ.: A neural-genetic (NN–GA) approach for optimising mechanisms having joints with clearance. Multibody Syst. Dyn. 20, 69–83 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Erkaya, S., Uzmay, İ.: Determining link parameters using genetic algorithm in mechanisms with joint clearance. Mech. Mach. Theory 44, 222–234 (2009)

    Article  MATH  Google Scholar 

  6. Miedema, B., Mansour, W.M.: Mechanical joints with clearance: A three-mode model. J. Eng. Ind. 98(4), 1319–1323 (1976)

    Google Scholar 

  7. Hunt, K.H., Crossley, F.R.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42, 440–445 (1975)

    Google Scholar 

  8. Khulief, Y.A., Shabana, A.A.: A continuous force model for the impact analysis of flexible multibody systems. Mech. Mach. Theory 22(3), 213–224 (1987)

    Article  Google Scholar 

  9. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990)

    Article  Google Scholar 

  10. Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82, 1359–1369 (2004)

    Article  Google Scholar 

  11. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004)

    Article  MATH  Google Scholar 

  12. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 41(3), 247–261 (2006)

    Article  MATH  Google Scholar 

  13. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1, 240–247 (2006)

    Article  Google Scholar 

  14. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3, 0110071–01100710 (2008)

    Google Scholar 

  15. Pombo, J.C., Ambrósio, J.A.C.: Application of a wheel–rail contact model to railway dynamics in small radius curved tracks. Multibody Syst. Dyn. 19, 91–114 (2008)

    Article  MATH  Google Scholar 

  16. Dubowsky, S., Gardner, T.N.: Design and analysis of multilink flexible mechanisms with multiple clearance connections. J. Eng. Ind. 99, 88–96 (1977)

    Google Scholar 

  17. Dubowsky, S., Deck, J.F., Costello, H.: The dynamic modeling of flexible spatial machine systems with clearance connections. J. Mech. Transm. Autom. 109, 87–94 (1987)

    Article  Google Scholar 

  18. Kakizaki, T., Deck, J.F., Dubowsky, S.: Modeling the spatial dynamics of robotic manipulators with flexible links and joint clearances. J. Mech. Des. 115, 839–847 (1993)

    Article  Google Scholar 

  19. Bauchau, O.A., Bottasso, C.L.: Contact conditions for cylindrical, prismatic, and screw joints in flexible multibody systems. Multibody Syst. Dyn. 5, 251–278 (2001)

    Article  MATH  Google Scholar 

  20. Bauchau, O.A., Rodriguez, J.: Modelling of joints with clearance in flexible multibody systems. Int. J. Solids Struct. 39, 41–63 (2002)

    Article  MATH  Google Scholar 

  21. Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical Report. No. MBS96-1-UIC, University of Illinois at Chicago (1996)

  22. Shabana, A.A.: Definition of the slopes and absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  24. Cardona, A., Geradin, M.: A beam finite element nonlinear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ambrosio, J.A.C., Nikravesh, P.: Elasto-plastic deformations in multibody dynamics. Nonlinear Dyn. 3, 85–104 (1992)

    Article  Google Scholar 

  26. Campanelli, M., Berzeri, M., Shabana, A.A.: Performance of the incremental and non-incremental finite element formulations in flexible multibody problems. J. Mech. Des. 122, 498–507 (2000)

    Article  Google Scholar 

  27. Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1, 3–12 (2006)

    Article  Google Scholar 

  28. Kerkkänen, K.S., García-Vallejo, D., Mikkola, A.: Modeling of belt-drives using a large deformation finite element formulation. Nonlinear Dyn. 43, 239–256 (2006)

    Article  MATH  Google Scholar 

  29. Dufva, K., Kerkkänen, K.S., Maqueda, L.G., Shabana, A.A.: Nonlinear dynamics of three-dimensional belt drives using the finite-element method. Nonlinear Dyn. 48, 449–466 (2007)

    Article  MATH  Google Scholar 

  30. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 5, 109–130 (2006)

    Article  Google Scholar 

  31. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 287–306 (2008)

    Article  MathSciNet  Google Scholar 

  32. Sanborn, G.G., Shabana, A.A.: A rational finite element method based on the absolute nodal coordinate formulation. Nonlinear Dyn. (Available online 11 April 2009). doi:10.1007/s11071-009-9501-4

  33. Zhang, Y., Tian, Q., Chen, L., Yang, J.: Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods. Multibody Syst. Dyn. 21(3), 281–303 (2009)

    Article  MATH  Google Scholar 

  34. Tian, Q., Zhang, Y., Chen, L., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4, 021009-1–021009-1-14 (2009)

    Google Scholar 

  35. Omar, A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  36. García-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007)

    Article  MATH  Google Scholar 

  37. Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, New York (2008)

    MATH  Google Scholar 

  38. García-Vallejo, D., Mayo, J., Escalona, J.L.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35, 313–329 (2004)

    Article  MATH  Google Scholar 

  39. Gerstmayr, J., Shabana, A.A.: Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: ECCOMAS Thematic Conference, Madrid, Spain, 21–24 June (2005)

  40. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. Liu, C., Zhang, K., Yang, L.: Normal force-displacement relationship of spherical joints with clearances. J. Comput. Nonlinear Dyn. 1(2), 160–167 (2006)

    Article  Google Scholar 

  42. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact-impact force model on the dynamic response of multibody systems. Proc. Inst. Mech. Eng, Part K: J. Multibody Dyn. 220(1), 21–34 (2006)

    Google Scholar 

  43. Ambrósio, J.A.C.: Impact of rigid and flexible multibody systems: deformation description and contact models. In: Schiehlen, W., Valásek, M. (eds.) Proceedings of the NATO-ASI on Virtual Non-linear Multibody Systems, vol. II, pp. 15–33 (2002)

  44. Ahmed, S., Lankarani, H.M., Pereira, M.F.O.S.: Frictional impact analysis in open loop multibody mechanical system. J. Mech. Des. 121, 119–127 (1999)

    Article  Google Scholar 

  45. Lankarani, H.M., Pereira, M.F.O.S.: Treatment of impact with friction in planar multibody mechanical systems. Multibody Syst. Dyn. 6, 203–227 (2001)

    Article  MATH  Google Scholar 

  46. Ravn, P., Shivaswamy, S., Alshaer, B.J., Lankarani, H.M.: Joint clearances with lubricated long bearings in multibody mechanical systems. J. Mech. Des. 122, 484–488 (2000)

    Article  Google Scholar 

  47. Sommerfeld, A.: Zur Hydrodynamischen Theorie der Schmiermittelreibung. Z. Angew. Math. Phys. 50, 97–155 (1904)

    Google Scholar 

  48. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn. 56, 277–295 (2009)

    Article  MATH  Google Scholar 

  49. Meijaard, J.P.: Efficient numerical integration of the equations of motion of non-smooth mechanical systems. Z. Angew. Math. Mech. 77, 419–427 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  50. Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37, 895–913 (2002)

    Article  MATH  Google Scholar 

  51. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation, The generalized-α method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  52. Arnold, M., Brüls, O.: Convergence of the generalized-a scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  53. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19(92), 577–593 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  54. Gerstmayr, J.: A solution strategy for elasto-plastic multibody systems and related problems. Ph.D. Dissertation, University of Linz, Austria (2001)

  55. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Q., Zhang, Y., Chen, L. et al. Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn 60, 489–511 (2010). https://doi.org/10.1007/s11071-009-9610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9610-0

Navigation