Skip to main content
Log in

Nonlinear dynamic analysis of Timoshenko beams by BEM. Part I: Theory and numerical implementation

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this two-part contribution, a boundary element method is developed for the nonlinear dynamic analysis of beams of arbitrary doubly symmetric simply or multiply connected constant cross section, undergoing moderate large displacements and small deformations under general boundary conditions, taking into account the effects of shear deformation and rotary inertia. Part I is devoted to the theoretical developments and their numerical implementation and Part II discusses analytical and numerical results obtained from both analytical or numerical research efforts from the literature and the proposed method. The beam is subjected to the combined action of arbitrarily distributed or concentrated transverse loading and bending moments in both directions as well as to axial loading. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, to the axial displacement and to two stress functions and solved using the Analog Equation Method, a BEM based method. Application of the boundary element technique yields a nonlinear coupled system of equations of motion. The solution of this system is accomplished iteratively by employing the average acceleration method in combination with the modified Newton–Raphson method. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. The proposed model takes into account the coupling effects of bending and shear deformations along the member, as well as the shear forces along the span induced by the applied axial loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Küpper, T., Molitor, A.: Nonlinear vibrations of simply supported beams. Nonlinear Anal. Theory Methods Appl. 3(1), 45–48 (1977)

    Article  Google Scholar 

  2. Liu, J.Q.: Nonlinear vibration of a beam. Nonlinear Anal. Theory Methods Appl. 13(10), 1139–1148 (1989)

    Article  MATH  Google Scholar 

  3. Prathap, G., Varadan, T.K.: The large amplitude vibration of hinged beams. Comput. Struct. l9, 219–222 (1978)

    Article  Google Scholar 

  4. Prathap, G., Varadan, T.K.: The large amplitude vibration of tapered clamped beams. J. Sound Vib. 58(1), 87–94 (1978)

    Article  MATH  Google Scholar 

  5. Sato, K.: Nonlinear free vibration of beams with clamped ends and with one end clamped, other end simply supported. Bull. J. Soc. Mech. Eng. 11, 1027–1036 (1968)

    Google Scholar 

  6. Rehfield, L.W.: Nonlinear free vibrations of elastic structures. Int. J. Solids Struct. 9, 581–590 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mei, Ch.: Finite element displacement method for large amplitude free flexural vibrations of beams and plates. Comput. Struct. 3, 163–174 (1973)

    Article  Google Scholar 

  8. Bhashyam, G.R., Prathap, G.: Galerkin finite element method for non-linear beam vibrations. J. Sound Vib. 72(2), 191–203 (1980)

    Article  MATH  Google Scholar 

  9. Yang, T.Y., Saigal, S.: A simple element for static and dynamic response of beams with material and geometric nonlinearities. Int. J. Numer. Methods Eng. 20, 851–867 (1984)

    Article  MATH  Google Scholar 

  10. Mei, Ch.: Discussion of finite element formulations of nonlinear beam vibrations. Comput. Struct. 22(1), 83–85 (1986)

    Article  Google Scholar 

  11. Leung, A.Y.T., Mao, S.G.: Symplectic integration of an accurate beam finite element in non-linear vibration. Comput. Struct. 54, 1135–1147 (1995)

    Article  MATH  Google Scholar 

  12. Chang, T.P., Liu, Y.-N.: Dynamic finite element analysis of a nonlinear beam subjected to a moving load. Int. J. Solids Struct. 33(12), 1673–1688 (1996)

    Article  MATH  Google Scholar 

  13. Fotouhi, R.: Dynamic analysis of very flexible beams. J. Sound Vib. 305, 521–533 (2007)

    Article  Google Scholar 

  14. Katsikadelis, J.T., Tsiatas, G.C.: Non-linear dynamic analysis of beams with variable stiffness. J. Sound Vib. 270, 847–863 (2004)

    Article  Google Scholar 

  15. Katsikadelis, J.T., Tsiatas, G.C.: Non-linear dynamic stability of damped Beck’s column with variable cross section. Int. J. Non-Linear Mech. 42, 164–171 (2007)

    Article  Google Scholar 

  16. Aristizabal-Ochoa, J.D.: On the comparison of Timoshenko and shear models in beam dynamics. ASCE J. Eng. Mech. 134(3), 269–270 (2008)

    Article  Google Scholar 

  17. Sapountzakis, E.J., Dourakopoulos, J.A.: Shear deformation effect in flexural-torsional vibrations of beams by BEM. Acta Mech. 203, 197–221 (2009)

    Article  MATH  Google Scholar 

  18. Aristizabal-Ochoa, J.D.: Timoshenko beam-column with generalized end conditions and nonclassical modes of vibration of shear beams. ASCE J. Eng. Mech. 130(10), 1151–1159 (2004)

    Article  Google Scholar 

  19. Arboleda-Monsalve, L.G., Zapata-Medina, D.G., Aristizabal-Ochoa, J.D.: Stability and natural frequencies of a weakened Timoshenko beam-column with generalized end conditions under constant axial load. J. Sound Vib. 307(1–2), 89–112 (2007)

    Article  Google Scholar 

  20. Aristizabal-Ochoa, J.D.: Static and dynamic stability of uniform shear beam-columns under generalized boundary conditions. J. Sound Vib. 307(1–2), 69–88 (2007)

    Article  Google Scholar 

  21. Arboleda-Monsalve, L.G., Zapata-Medina, D.G., Aristizabal-Ochoa, J.D.: Timoshenko beam-column with generalized end conditions on elastic foundation: dynamic-stiffness matrix and load vector. J. Sound Vib. 310, 1057–1079 (2008)

    Article  Google Scholar 

  22. Hernández-Urrea, J.A., Aristizábal-Ochoa, J.D.: Static and dynamic stability of an elastically restrained Beck column with an attached end mass. J. Sound Vib. 312(4–5), 789–800 (2008)

    Google Scholar 

  23. Rao, G.V., Raju, I.S., Kanaka Raju, K.: Nonlinear vibrations of beams considering shear deformation and rotary inertia. AIAA J. 14(5), 685–687 (1976)

    Article  MATH  Google Scholar 

  24. Foda, M.A.: Influence of shear deformation and rotary inertia on nonlinear free vibration of a beam with pinned ends. Comput. Struct. 71, 663–670 (1999)

    Article  Google Scholar 

  25. Zhong, H., Guo, Q.: Nonlinear vibration analysis of Timoshenko beams using the differential quadrature method. Nonlinear Dyn. 32, 223–234 (2003)

    Article  MATH  Google Scholar 

  26. Guo, Q., Liu, X., Zhong, H.: Nonlinear vibrations of Timoshenko beams with various boundary conditions. Tsinghua Sci. Technol. 9(2), 125–129 (2004)

    Google Scholar 

  27. Zhong, H., Liao, M.: Higher-order nonlinear vibration analysis of Timoshenko beams by the spline-based differential quadrature method. Shock Vib. 14, 407–416 (2007)

    Google Scholar 

  28. Liao, M., Zhong, H.: Nonlinear vibration analysis of tapered Timoshenko beams. Chaos Solitons Fractals 36, 1267–1272 (2008)

    Article  MATH  Google Scholar 

  29. Doong, J.L., Chen, C.S.: Large amplitude vibration of a beam based on a higher-order deformation theory. Appl. Acoustics 25, 281–293 (1988)

    Article  Google Scholar 

  30. Lai, S.H.Y.: Nonlinear finite element modelling of a high speed rotating Timoshenko beam structure. Int. J. Mech. Sci. 36(9), 849–861 (1994)

    Article  MATH  Google Scholar 

  31. Meek, J.L., Liu, H.: Nonlinear dynamics analysis of flexible beams under large overall motions and the flexible manipulator simulation. Comput. Struct. 56(1), 1–14 (1995)

    Article  MATH  Google Scholar 

  32. Wang, R.T., Chou, T.H.: Non-linear vibration of Timoshenko beam due to a moving force and the weight of beam. J. Sound Vib. 218(1), 117–131 (1998)

    Article  Google Scholar 

  33. Maqueda, L.G., Shabana, A.A.: Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams. J. Multibody Syst. Dyn. 18(3), 375–396 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Katsikadelis, J.T.: The analog equation method. A boundary-only integral equation method for nonlinear static and dynamic problems in general bodies. Theor. Appl. Mech. 27, 13–38 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Chang, S.Y.: Studies of Newmark method for solving nonlinear systems: (I) basic analysis. J. Chin. Inst. Eng. 27(5), 651–662 (2004)

    Google Scholar 

  36. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)

    MATH  Google Scholar 

  37. Atanackovic, T.M., Spasic, D.T.: A model for plane elastica with simple shear deformation pattern. Acta Mech. 104, 241–253 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. Aristizábal-Ochoa, J.D.: Tension buckling in multilayer elastomeric bearings by James M. Kelly. ASCE J. Eng. Mech. 129(12), 1363–1368 (2003). Discussion: 131(1), 106–108 (2005)

    Article  Google Scholar 

  39. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw–Hill, New York (1984)

    Google Scholar 

  40. Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. ASME J. Appl. Mech. 33(2), 335–340 (1966)

    MATH  Google Scholar 

  41. Schramm, U., Kitis, L., Kang, W., Pilkey, W.D.: On the shear deformation coefficient in beam theory. Finite Elem. Anal. Des. 16, 141–162 (1994)

    Article  MATH  Google Scholar 

  42. Schramm, U., Rubenchik, V., Pilkey, W.D.: Beam stiffness matrix based on the elasticity equations. Int. J. Numer. Methods Eng. 40, 211–232 (1997)

    Article  Google Scholar 

  43. Stephen, N.G.: Timoshenko’s shear coefficient from a beam subjected to gravity loading. ASME J. Appl. Mech. 47, 121–127 (1980)

    MATH  Google Scholar 

  44. Hutchinson, J.R.: Shear coefficients for Timoshenko beam theory. ASME J. Appl. Mech. 68, 87–92 (2001)

    Article  MATH  Google Scholar 

  45. Ramm, E., Hofmann, T.J.: Stabtragwerke, Der Ingenieurbau. In: Mehlhorn, G. (ed.) Band Baustatik/Baudynamik. Ernst & Sohn, Berlin (1995)

    Google Scholar 

  46. Rothert, H., Gensichen, V.: Nichtlineare Stabstatik. Springer, Berlin (1987)

    MATH  Google Scholar 

  47. Sapountzakis, E.J., Mokos, V.G.: A BEM solution to transverse shear loading of beams. Comput. Mech. 36, 384–397 (2005)

    Article  MATH  Google Scholar 

  48. Thomson, W.T.: Theory of Vibration with Applications. Prentice Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  49. Sapountzakis, E.J., Katsikadelis, J.T.: Analysis of plates reinforced with beams. Comput. Mech. 26, 66–74 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Sapountzakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapountzakis, E.J., Dourakopoulos, J.A. Nonlinear dynamic analysis of Timoshenko beams by BEM. Part I: Theory and numerical implementation. Nonlinear Dyn 58, 295–306 (2009). https://doi.org/10.1007/s11071-009-9481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9481-4

Keywords

Navigation