Skip to main content
Log in

Coexisting solutions and their chaotic neighborhood in the dynamical systems of nonlinear optics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Coexisting periodic solutions of a dynamical system describing nonlinear optical processes of the second-order are studied. The analytical results concern both the simplified autonomous model and the extended nonautonomous model, including the pump and damping mechanism. The neighborhood of periodic solutions is studied numerically, mainly in phase portraits. As a result of disturbance, for example detuning, the periodic solutions are shown to escape to other states, periodic, quasiperiodic, or chaotic. The chaotic behavior is indicated by the Lyapunov exponents. We also investigate selected aspects of synchronization (unidirectional or mutual) of two identical systems being in two different coexisting states. The effects of quenching the oscillations are shown. The quenching seems very promising for design of some advanced signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. Springer, New York (1983)

    Google Scholar 

  2. Curry, J.: On the Henon transformation. Commun. Math. Phys. 68, 129–140 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arecchi, F.T., Meucci, R., Puccioni, G., Tredicce, J.: Experimental evidence of subharmonic bifurcations, and multistability, and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 49, 1217–1220 (1982)

    Article  Google Scholar 

  4. Arecchi, F.T., Harrison, R.H. (eds.): Instabilities and chaos in quantum optics. Springer, Berlin (1987)

    Google Scholar 

  5. Brun, E., Derighette, B., Meier, D., Holzner, R., Raveni, M.: Observation of order and chaos in a nuclear-spin flip laser. J. Opt. Soc. Am. B 2, 156–167 (1985)

    Article  Google Scholar 

  6. Lugiato, L.A., Oldano, C., Fabre, C., Giacobino, E., Horowicz, R.J.: Bistability, self-pulsing and chaos in optical parametric oscillators. Nuovo Cim. 10D, 959 (1988)

    Google Scholar 

  7. Maurer, J., Libchaber, A.: Effect of the Prandtl number on the onset of turbulence in liquid 4He. J. Phys. (Paris) Lett. 41, 515 (1980)

    Google Scholar 

  8. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (1986)

    MATH  Google Scholar 

  9. Goldbeter, A., Martiel, J.-L.: Birhythmicity in a model for the cyclic AMP signaling system of the slime mold Dictyostellium discoideum. FEBS Lett. 191, 149 (1985)

    Article  Google Scholar 

  10. Chialvo, D.R., Apkarian, A.V.: Modulated noisy biological dynamics: Three examples. J. Stat. Phys. 70, 375–391 (1993)

    Article  MATH  Google Scholar 

  11. Foss, J., Longtin, A., Mensour, B., Milton, J.: Multistability and delayed recurrent loops. Phys. Rev. Lett. 76, 708–711 (1996)

    Article  Google Scholar 

  12. Drummond, P., McNeil, K., Walls, D.: Non-equilibrium transitions in sub/second harmonic generation I. Semiclassical theory. Opt. Acta 27, 321–335 (1980)

    MathSciNet  Google Scholar 

  13. Mandel, P., Erneux, T.: Amplitude self-modulation of interactivity second-harmonic generation. Opt. Acta 29, 7–21 (1982)

    MathSciNet  Google Scholar 

  14. Savage, C., Walls, D.: Optical chaos in sub/second harmonic generation. Opt. Acta 30, 557–561 (1983)

    Google Scholar 

  15. Gao, W.: Study on statistical properties of chaotic laser light. Phys. Lett. A 331, 292–297 (2004)

    Article  MATH  Google Scholar 

  16. Bloembergen, N.: Nonlinear Optics. Benjamin, Elmsford (1965)

    Google Scholar 

  17. Perina, J.: Quantum Statistics of Linear and Nonlinear Optical Phenomena. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  18. Minorsky, N.: Nonlinear Oscillations. Van Nostrand, Princeton (1962)

    MATH  Google Scholar 

  19. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization—a universal concept in nonlinear sciences. In: Cambridge Nonlinear Sciences Series, vol. 12. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  20. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)

    Article  MathSciNet  Google Scholar 

  22. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  Google Scholar 

  23. Grassi, G., Mascolo, S.: Nonlinear Observer Design to Synchronize Hyperchaotic Systems via a Scalar Signal. IEEE Trans. CAS-I 44, 1011 (1997)

    Article  Google Scholar 

  24. Balthazar, J.M., Felix, J.L.M., Brasil, R.: Some comments on the numerical simulation of self-synchronization of four non-ideal exciters. Appl. Math. Comput. 164, 615–625 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rafikov, M., Balthazar, J.M.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Commun. Nonlinear Sci. Numer. Simul. 13, 1246–1255 (2008)

    Article  MathSciNet  Google Scholar 

  26. Aronson, D.G., Ermentrout, G.B., Koppel, N.: Amplitude response of coupled oscillators. Physica D 41, 403–449 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sliwa, I., Szlachetka, P., Grygiel, K.: Chaotic beats in a nonautonomous system governing second-harmonic generation of light. Int. J. Bifurc. Chaos 17, 3253–3257 (2007)

    Article  MATH  Google Scholar 

  28. Sliwa, I., Szlachetka, P., Grygiel, K.: Generation of strongly chaotic beats. Int. J. Bifurc. Chaos 13, 835–840 (2008)

    Google Scholar 

  29. Sliwa, I., Grygiel, K., Szlachetka, P.: Hyperchaotic beats and their collapse to the quasiperiodic oscillation. Nonlinear Dyn. 53, 13–18 (2008)

    Article  MATH  Google Scholar 

  30. Grygiel, K.: Synchronization of two coupled second-harmonic generation systems. Opt. Commun. 240, 391–398 (2002)

    Article  Google Scholar 

  31. Drobny, G., Bandilla, A., Jex, I.: Quantum description of nonlinearly interacting oscillators via classical trajectories. Phys. Rev. A 55, 78–93 (1997)

    Article  Google Scholar 

  32. Bandilla, A., Drobny, G., Jex, I.: Phase-space motion in parametric three-wave interaction. Opt. Commun. 128, 353–362 (1996)

    Article  Google Scholar 

  33. Klimov, A.B., Sanchez-Soto, L.L., Delgado, J.: Mimicking a Kerrlike medium in the dispersive regime of second-harmonic generation. Opt. Commun. 191, 419–426 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Grygiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Śliwa, I., Szlachetka, P. & Grygiel, K. Coexisting solutions and their chaotic neighborhood in the dynamical systems of nonlinear optics. Nonlinear Dyn 57, 143–156 (2009). https://doi.org/10.1007/s11071-008-9428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9428-1

Keywords

Navigation