Skip to main content
Log in

A differential quadrature algorithm for nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Numerical solutions of a nonlinear Schrödinger equation is obtained using the differential quadrature method based on polynomials for space discretization and Runge–Kutta of order four for time discretization. Five well-known test problems are studied to test the efficiency of the method. For the first two test problems, namely motion of single soliton and interaction of two solitons, numerical results are compared with earlier works. It is shown that results of other test problems agrees the theoretical results. The lowest two conserved quantities and their relative changes are computed for all test examples. In all cases, the differential quadrature Runge–Kutta combination generates numerical results with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karpman, V.I., Krushkal, E.M.: Modulated waves in non-linear dispersive media. Sov. Phys. JETP 28, 277 (1969)

    Google Scholar 

  2. Scott, A.C., Chu, F.Y.F., Mclaughlin, D.W.: The soliton: a new concept in applied science. Proc. IEEE 61, 1443 (1973)

    Article  MathSciNet  Google Scholar 

  3. Zakharov, V.E., Shabat, A.B.: Exact theory of two dimensional self focusing and one dimensional self waves in non-linear media. Sov. Phys. JETP 34, 62 (1972)

    MathSciNet  Google Scholar 

  4. Delfour, M., Fortin, M., Payne, G.: Finite-difference solutions of a non-linear Schrodinger equation. J. Comput. Phys. 44, 277–288 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution equations, II: numerical, nonlinear Schrodinger equations. J. Comput. Phys. 55, 203–230 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Argyris, J., Haase, M.: An engineer’s guide to soliton phenomena: application of the finite element method. Comput. Methods Appl. Mech. Eng. 61, 71–122 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Twizell, E.H., Bratsos, A.G., Newby, J.C.: A finite-difference method for solving the cubic Schrodinger equation. Math. Comput. Simul. 43, 67–75 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dağ, İ., A quartic B-spline finite element method for solving nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 174, 247–258 (1999)

    Article  MATH  Google Scholar 

  9. Chen, H., Shizgal, B.D.: The quadrature discretization method in the solution of the Schrödinger equation. J. Chem. 24(4), 321–343 (1998)

    MATH  MathSciNet  Google Scholar 

  10. Shizgal, B.D., Chen, H.: The quadrature discretization method in the solution of the Schrödinger equation with nonclassical basis functions. J. Chem. Phys. 104(11), 4137–4150 (1996)

    Article  Google Scholar 

  11. Leung, K., Shizgal, B.D., Chen, H.: The quadrature discretization method in comparison with other numerical methods of solution of the Fokker–Planck for electron thermalization. J. Math. Chem. 24(4), 291–319 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lo, J., Shizgal, B.D.: Spectral convergence of the quadrature discretization method in the solution of the Schrödinger and Fokker–Planck equations: comparison with Sinc methods. J. Chem. Phys. 125(19), 194108 (2006)

    Article  Google Scholar 

  13. Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear differential equations. J. Comput. Phys. 10, 40–52 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  14. Quan, J.R., Chang, C.T.: New sightings in involving distributed system equations by the quadrature methods, I. Comput. Chem. Eng. 13, 779–788 (1989)

    Article  Google Scholar 

  15. Quan, J.R., Chang, C.T.: New sightings in involving distributed system equations by the quadrature methods, II. Comput. Chem. Eng. 13, 71017–71024 (1989)

    Google Scholar 

  16. Bellman, R., Kashef, B., Lee, E.S., Vasudevan, R.: Differential quadrature and splines. In: Computers and Mathematics with Applications, pp. 371–376. Pergamon, Oxford (1976)

    Google Scholar 

  17. Shu, C., Richards, B.E.: Application of generalized differential quadrature to solve two dimensional incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 15, 791–798 (1992)

    Article  MATH  Google Scholar 

  18. Shu, C., Wu, Y.L.: Integrated radial basis functions-based differential quadrature method and its performance. Int. J. Numer. Methods Fluids 53, 969–984 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shu, C., Xue, H.: Explicit computation of weighting coefficients in the harmonic differential quadrature. J. Sound Vib. 204(3), 549–555 (1997)

    Article  Google Scholar 

  20. Striz, A.G., Wang, X., Bert, C.W.: Harmonic differential quadrature method and applications to analysis of structural components. Acta Mech. 111, 85–94 (1995)

    Article  MATH  Google Scholar 

  21. Civalek, Ö.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. Int. J. 26(2), 171–186 (2004)

    Article  Google Scholar 

  22. Civalek, Ö: Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation. J. Sound Vib. 294, 966–980 (2006)

    Article  Google Scholar 

  23. Malekzadeh, P., Karami, G.: Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates. Eng. Struct. 27, 1563–1574 (2005)

    Article  Google Scholar 

  24. Zhu, Y.D., Shu, C., Qiu, J., Tani, J.: Numerical simulation of natural convection between two elliptical cylinders using DQ method. Int. J. Heat Mass Transf. 47, 797–808 (2004)

    Article  MATH  Google Scholar 

  25. Lee, T.S., Hu, G.S., Shu, C.: Application of GDQ method for study of mixed convection in horizontal eccentric annuli. Int. J. Comput. Fluid Dyn. 18(1), 71–79 (2004)

    Article  MATH  Google Scholar 

  26. Zhong, H.: Spline-based differential quadrature for fourth order differential equations and its application to Kirchhoff plates. Appl. Math. Model. 28, 353–366 (2004)

    Article  MATH  Google Scholar 

  27. Whitham, G.B.: Linear and Nonlinear Waves. Wiley/Interscience, New York (1974)

    MATH  Google Scholar 

  28. Herbst, B.M., Morris, J.L., Mitchel, A.R.: Numerical experience with the nonlinear Schrödinger equation. J. Comput. Phys. 60, 282–305 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  29. Miles, J.W.: An envelope soliton problems. SIAM J. Appl. Math. 41, 227–230 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Fornberg, B., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. 289, 373–404 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gardner, L.R.T., Gardner, G.A., Zaki, S.I., Sharawi, Z.E.: B-spline finite element studies of the non-linear Schrodinger equation. Comput. Methods Appl. Mech. Eng. 108, 303–318 (1993)

    Article  MATH  Google Scholar 

  32. Gardner, L.R.T., Gardner, G.A., Zaki, S.I., Sharawi, Z.E.: A Leapfrog algorithm and stability studies for the non-linear Schrodinger equation. Arab. J. Sci. Eng., 23–32 (1993)

  33. Zacharov, V.E., Shabat, A.B.: Exact theory of two dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    Google Scholar 

  34. Tourigny, Y., Morris, J.L.: An investigation into effect of product approximation in the numerical solution of the cubic nonlinear Schrödinger equation. J. Comput. Phys. 76, 103–130 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Korkmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkmaz, A., Dağ, İ. A differential quadrature algorithm for nonlinear Schrödinger equation. Nonlinear Dyn 56, 69–83 (2009). https://doi.org/10.1007/s11071-008-9380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9380-0

Keywords

Navigation