Skip to main content
Log in

Optimal feedback control of the deployment of a tethered subsatellite subject to perturbations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the nonlinear optimal feedback control for the deployment process of a tethered subsatellite model, which involves not only the usually addressed in-plane motion, but also the out-of-plane motion. The model also takes the uncertainties in the mass parameter, the perturbations in initial states, and the external disturbance forces into consideration from an engineering point of view. The proposed controller is on the basis of a shrinking horizon and online grid adaptation scheme. Even though the proposed feedback law is not analytically explicit, it is easy to determine it by using a rapid recomputation of the open-loop optimal control, which generates the initial guesses for controls by interpolating the results from the previous computation. The case studies in the paper well demonstrate the effectiveness, robustness, and dominant real-time merits of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cosmo, M.L., Lorenzini, E.C.: Tethers in Space Handbook, 3rd edn. Smithsonian Astrophysical Observatory, Cambridge, Massachusetts (1997)

    Google Scholar 

  2. Barkow, B.A.: Chaos Control Strategy for the Deployment of a Tethered Satellite System. Dissertation, Vienna University of Technology, Vienna (2002)

  3. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. R Soc. A 341(1626), 299–315 (1974)

    Article  Google Scholar 

  4. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non-Linear Mech. 19(1), 39–52 (1984)

    Article  MATH  Google Scholar 

  5. Perkins, N.C., Mote Jr., C.D.: Three-dimensional vibration of traveling elastic cables. J. Sound Vib. 114(2), 325–340 (1987)

    Article  Google Scholar 

  6. Luo, A.C.J., Mote Jr., C.D.: Equilibrium solutions and existence for traveling, arbitrarily sagged elastic cables. ASME J. Appl. Mech. 67(1), 148–154 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Rega, G.: Nonlinear vibrations of suspended cables —Part I: Modeling and analysis. Appl. Mech. Rev. 57(6), 443–478 (2004)

    Article  Google Scholar 

  8. Barkow, B., Steindl, A., Troger, H.: A targeting strategy for the deployment of a tethered satellite system. IMA J. Appl. Math. 70(5), 626–644 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Steindl, A., Troger, H.: Optimal control of deployment of a tethered subsatellite. Nonlinear Dyn. 31(3), 257–274 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Williams, P., Trivailo, P.: On the optimal deployment and retrieval of tethered satellites. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Reston, VA, AIAA-2005-4291

  11. Jin, D.P., Hu, H.Y.: Optimal control of a tethered subsatellite of three degrees of freedom. Nonlinear Dyn. 46(1–2), 161–178 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bainum, P., Kumar, V.K.: Optimal control of the shuttle-tethered-subsatellite system. Acta Astronaut. 7(12), 1333–1348 (1980)

    Article  MATH  Google Scholar 

  13. Fujii, H.A., Anazawa, S.: Deployment/retrieval control of tethered subsatellite through an optimal path. J. Guid. Control Dyn. 17(6), 1292–1298 (1994)

    Google Scholar 

  14. Williams, P.: Application of pseudo-spectral methods for receding horizon control. J. Guid. Control Dyn. 27(2), 310–314 (2004)

    Google Scholar 

  15. Gläßel, H., Zimmermann, F., Brückner, S., Schöttle, U.M. et al.: Adaptive neural control of the deployment procedure for tether-assisted reentry. Aerospace Sci. Technol. 8(1), 73–81 (2004)

    Article  MATH  Google Scholar 

  16. Sekhavat, P., Fleming, A., Ross, I.M.: Time-optimal nonlinear feedback control for the NPSAT1 spacecraft. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, vol. 2, pp. 843–850 (2005)

  17. John, T.B.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21(2), 193–207 (1998)

    Article  MATH  Google Scholar 

  18. Elnagar, G., Kazemi, M.A., Razzaghi, M.: The Legendre pseudo-spectral method for discretizing optimal control problems. IEEE Trans. Autom. Control 40(10), 1793–1796 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ross, I.M., Fahroo, F.: Pseudo-spectral knotting methods for solving optimal control problems. J. Guid. Control Dyn. 27(3), 397–405 (2004)

    Google Scholar 

  20. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Programming 106(1), 25–57 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, H., Jin, D.P. & Hu, H.Y. Optimal feedback control of the deployment of a tethered subsatellite subject to perturbations. Nonlinear Dyn 51, 501–514 (2008). https://doi.org/10.1007/s11071-007-9240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9240-3

Keywords

Navigation