Skip to main content
Log in

A DQ based approach to simulate the vibrations of buckled beams

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear planar response of a hinged–hinged buckled beam to a primary-resonance excitation of its first vibration mode is computed by a new numerical scheme. The beam is subjected to an axial force beyond the critical load of the first buckling mode and to a transverse harmonic excitation. The nonlinear dynamical problem is solved by deducing directly the discretized equations governing the problem thanks to a new approach, here called DQ based approach, since it is based on the application of the quadrature rules of the DQM. As it will be shown, for the problem here considered, the minimum number of degrees of freedom to be retained to limit the numerical errors is four. Computer simulations of the dynamic behaviour of the discretized system are conducted by means of the IDQ method, a method proposed and recently generalized by the author. A sequence of supercritical period-doubling bifurcations leading to chaos, snapthrough motions and quasi-periodic motions can be observed, similarly to some cases existing in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tseng, W.Y., Dugundji, J.: Nonlinear vibrations of a buckled beam under harmonic excitation. J. Appl. Mech. 38, 467–476 (1971)

    MATH  Google Scholar 

  2. Moon, F.C., Holmes, P.J.: A magnetoelastic strange attractor. J. Sound Vib. 65, 275–296 (1979)

    Article  MATH  Google Scholar 

  3. Holmes, P.J.: A nonlinear oscillator with a strange attractor. Phil. Trans. R. Soc. Lond. 292, 419–448 (1979)

    Article  MATH  Google Scholar 

  4. Holmes, P., Marsden, J.: A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam. Arch. Ration. Mech. Anal. 76, 135–165 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Holmes, P.J., Moon, F.C.: Strange attractor and chaos in nonlinear mechanics. J. Appl. Mech. 50, 1021–1032 (1983)

    MathSciNet  Google Scholar 

  6. Tang, D.M., Dowell, E.H.: On the threshold force for chaotic motions for a forced buckled beam. J. Appl. Mech. 55, 190–196 (1988)

    Article  Google Scholar 

  7. Seydel, R.: From Equilibrium to Chaos — Practical Bifurcation and Stability Analysis. Elsevier, New York (1988)

    MATH  Google Scholar 

  8. Hanagaud, S., Abhyankar, N.S., Chander, R.: Studies in chaotic vibrations of buckled beams. Appl. Mech. Rev. 42(11), 100–107 (1989)

    Article  Google Scholar 

  9. Reynolds, T.S., Dowell, E.H.: The role of higher modes in the chaotic motion of the buckled beam-I. Int. J. Non-Linear Mech. 31, 931–939 (1996)

    Article  MATH  Google Scholar 

  10. Reynolds, T.S., Dowell, E.H.: The role of higher modes in the chaotic motion of the buckled beam-II. Int. J. Non-Linear Mech. 31, 941–950 (1996)

    Article  Google Scholar 

  11. Abou-Rayan, A.M., Nayfeh, A.H., Mook, D.T.: Nonlinear response of a parametrically excited buckled beam. Nonlinear Dyn. 4, 499–525 (1993)

    Article  Google Scholar 

  12. Nayfeh, A.H., Lacarbonara, W.: On the discretization of distributed-parameter systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 13, 203–220 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kreider, W., Nayfeh, A.H.: Experimental investigation of single-mode responses in a fixed-fixed buckled beam. Nonlinear Dyn. 15, 155–177 (1998)

    Article  MATH  Google Scholar 

  14. Emam, S.A., Nayfeh, A.H.: On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation. Nonlinear Dyn. 35(1), 1–17 (2004)

    Article  MATH  Google Scholar 

  15. Sinha, S.C., Senthilnathan, N.R., Pandiyan, R.: A new numerical technique for the analysis of parametrically excited nonlinear systems. Nonlinear Dyn. 4, 483–498 (1993)

    Article  Google Scholar 

  16. Krishnamurthy, K., Burton, T.D., Zeller, L.: Finite element analysis of nonlinear oscillators. Int. J. Numer. Methods Eng. 21, 409–420 (1985)

    Article  MATH  Google Scholar 

  17. Samoilenko, A.M., Ronto, N.I.: Numerical-Analytic Methods of Investigating Periodic Solutions. Mir Publishers, Moscow (1979)

    Google Scholar 

  18. Villadson, J., Michelson, M.L.: Solution of Differential Equation Models by Polynomial Approximation. Prentice-Hall, New Jersey (1978)

    Google Scholar 

  19. Tomasiello, S.: A generalization of the IDQ method and a DQ based approach to approximate non-smooth solutions. J. Sound Vib. To appear (2006)

  20. Tomasiello, S.: Simulating non-linear coupled oscillators by an iterative differential quadrature method. J. Sound Vib. 265, 507–525 (2003)

    Article  Google Scholar 

  21. Tomasiello, S.: Stability and accuracy of the iterative differential quadrature method. Int. J. Numer. Methods Eng. 58, 1277–1296 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1987)

    Google Scholar 

  23. Jang, S.K., Bert, C.W., Striz, A.G.: Application of differential quadrature method to deflection and buckling of structural components. Int. J. Numer. Methods Eng. 28, 561–577 (1989)

    Article  MATH  Google Scholar 

  24. Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)

    Article  Google Scholar 

  25. Shu, C., Du, H.: Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates. Int. J. Solid Struct. 34, 819–835 (1997)

    Article  MATH  Google Scholar 

  26. Shu, C., Chen, W.: On optimal selection of interior points for applying discretized boundary conditions in DQ vibration analysis of beams and plates. J. Sound Vib. 222(2), 239–257 (1999)

    Article  Google Scholar 

  27. Nayfeh, A.H., Kreider, W., Anderson, T.J.: Investigation of natural frequencies and mode shapes of buckled beams. AIAA J. 33, 1121–1126 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tomasiello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomasiello, S. A DQ based approach to simulate the vibrations of buckled beams. Nonlinear Dyn 50, 37–48 (2007). https://doi.org/10.1007/s11071-006-9141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9141-x

Keywords

Navigation